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1. Introduction

•Microgrids are set to become an integral part of the modern-day
electricity grid.

•Uncontrolled power injection from distributed sources leads to:

– Power quality problems like steep voltage changes, current spikes
etc.

– Limited financial benefits - for example, solar self consumption
when demand matches generation.

•Niche use-case for storage.

•Harnessing energy storage - majority literature limited to individual
households - for example, [MMdH+15].

•Optimal sizing and siting of PV/storage systems combined is essen-
tial

– Improved economics of microgrid operation,
– Be�er power quality.

2. Contribution

• In our previous work, we developed a techno-financial feasibility
model for ba�ery sizing in microgrid networks.

• In this work

– PV sizing
– Bi-directional power-flow
– Ba�ery degradation is penalized.

3. Network, Cost and Constraints

•Detailed mathematical model in [KdA+17].

•Current source/sink model based on unity power-factor assump-
tion.

•PV sizing Ψ constraint
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•Ba�ery degradation cost [AHM+16]
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•Any charge in or out of the ba�ery decreases its lifetime.

4. Results and Conclusion

•The microgrid considered is as shown in Figure 1 with n = 6.

•The demand data is obtained from [Dep14].

•Passing on the demand data into the optimization algorithm as seen
in [KdA+17] with modifications to add PV sizing led to initial sizing
decisions.
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Figure 2: Ba�ery current bt
x

decisions (a) without and (b) ba�ery degra-
dation costs as a centralized optimization.
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Figure 3: (a) Cable currents in (A) and (b) depreciation in ba�ery value
with and without ba�ery degradation cost as a centralized optimization.

•Doubled ba�ery lifetime ⟺ about 26% overall benefit
•Linear model ⟺ computationally flexible
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