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Abstract

Stability and power sharing properties of droop controlled inverter-based microgrid systems depend on various design factors.
Little explored is the effect of component mismatches and parameters drifts on the stability, steady state behaviour and power
sharing properties of these systems. In this paper, the behaviour of frequency droop controlled inverter based microgrid systems
in the presence of non-identical clocks is analysed. It is shown that power sharing between converters in a microgrid can be
sensitive to clock mismatches. Our proposal shows that a coordination control that uses sparse inter-node communications
is useful in ensuring desired active power sharing. Conditions are derived to ensure stability in the presence of the proposed
controller and simulation results are presented.
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1 Introduction

Integration of renewable energy has been proposed as
a feasible technique to elude the increasing electricity
prices and simultaneously alleviate carbon emissions.
Most often, the renewable energy sources are spatially
distributed making domestic consumption, through tra-
ditional radial power flow, a lossy system. Microgrids
and storage, therefore, appear as natural extensions to
this decentralization of renewable energy generation.
Traditional generation (using rotating machines) is well
understood and its availability is deemed to be very
important to easily maintain the voltage and frequency
levels. Despite the fact that microgrids are envisioned
as exciting opportunities, the majority of the sources
within them are power electronic converter (inverter)
based. There are some technical challenges that have to
be addressed before there can be large scale deployment
of modern microgrids.

Parallel operation and power sharing between inverter
based sources through frequency droop control was first
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proposed in [1]. Drawing motivation from the operation
of synchronous generators, frequency droop controlled
inverters measure their real and reactive power output
and accordingly modify their frequency and voltage, re-
spectively. Certain design criteria are used to ensure pro-
portional power sharing between inverters in such sys-
tems. Various aspects of frequency droop controlled mi-
crogrid systems have been discussed in [2, 3].

Frequency/clock mismatches affect frequency droop
controlled systems. The majority of the work in inverter
interfaced microgrids based on droop control focuses on
the stability and efficiency of these systems under some
assumptions. A few papers [4, 5] have commented on the
significance of computational delays, numerical errors
and parameter uncertainties and acknowledged their ef-
fect on the power sharing between droop controlled sys-
tems. In [4] a qualitative analysis is performed to demon-
strate the contribution of these component mismatches
to inaccuracy in power sharing (specifically those aris-
ing from voltage mismatches when real power - voltage
droop control is used). A robust voltage controller is
then proposed to mitigate these effects. Simulation re-
sults in [5] show that unequal response times between
inverters may lead to network instability. However, nei-
ther work discusses the affect of parameter mismatches
on the stability of the overall system from a qualitative
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perspective, particularly when the mismatches are in
the form of frequency. Some authors have acknowledged
the issues arising from these mismatches. Papers [4, 6]
showed some simulation results illustrating the issues.
In [7] the mismatches arising from clock drifts are well
addressed but their assumption on line resistance and
small drifts are considered and questioned in the present
work. While it is possible to have frequency mismatches
arising from various scenarios like, crystal inaccuracies,
inaccurate pre-synchronization of inverter interconnec-
tion [6] and so on, an assumption that the clock is very
stable and accurate pervades the microgrid literature.

1.1 Contribution

In this work, the effectiveness of classical frequency
droop control is revisited in the context of clock drifts.
The main contributions of this work are twofold. Firstly,
small frequency variations are natural in inverters and
it is shown that their mere presence will disturb the
power distribution equilibrium and may potentially im-
pact stability. Inspired by consensus-based frequency
restoration [2] and consensus-based droop control tech-
niques [8], a modified version of droop control is pre-
sented to restore the desired power distribution equi-
librium. Secondly, taking our control technique into
account, we establish stability for a constant impedance
load based microgrid. Moreover, the proposed control
technique is supplementary to traditional frequency
droop control, unlike some works, for example [9],
thereby retaining the stability and power sharing prop-
erties of the former under communication outages. We
provide stability conditions for a Kron reduced network
using our proposed controller through Lyapunov’s in-
direct method. We show that there are multiple zero
eigenvalues for the linearized state transition matrix
and therefore use dimensionality reduction to emphasize
that the zeros arise from redundancy in the controller
implementation. Our proposal provides improved power
sharing performance for smaller droop coefficients also
thereby reducing frequency deviation. This will in-turn
assist in improving model accuracy. Simulation results
that demonstrate the efficacy of the proposed controller
are also presented.

1.2 Preliminaries and Notation

In an n inverter (node) system we define the n-
dimensional column vector x = col(xi) = [x1, x2, . . . , xn]T

where (·)T represents a transpose function. Let diag(xi)
be a (n×n)-dimensional diagonal matrix with xi in the
ith row and ith column and 0 elsewhere. The (n × n)-
dimensional identity matrix is given by In = diag(1).
The matrix 1n×n is a (n × n)-dimensional matrix with
all elements equal to 1. If y = a + jb is a complex
number with j =

√
−1, then the real part is given by

<{y} = a and the imaginary part is given by ={y} = b.
The notation (·)∗ denotes complex conjugate of a com-
plex number. A communication network is represented

as a connected graph Gc = (Vc,Ec), where Vc is the
set of nodes and Ec is the set of edges which repre-
sent the communication links between nodes. We define
the communication degree matrix Dc := diag(deg(i)),
where deg(i) is the number of communication links con-
nected to the ith node. Adjacency matrix Ac represents
the connections between nodes in the communication
graph with aij = aji = 1 if the nodes i and j are con-
nected, and aij = aji = 0 otherwise. Self loops are
avoided, meaning aii = 0 for any node i. We denote the
communication graph Laplacian Lc = Dc − Ac. The
vector 1n is basis of the kernel of Lc i.e., for any vector
c = θ1n, θ ∈ R \ {0} we have Lcc = 0n and since the
matrix is symmetric we also have cTLc = 0Tn . Its eigen-
values {λc,1, λc,2, . . . λc,n} obey the relationship [10]:
0 = λc,1 < λc,2 ≤ . . . λc,n.

2 System Set-up

2.1 Modelling clock drifts

To facilitate an analysis that considers the clock drift ef-
fect, we denote the voltage at each inverter in terms of a
common reference time t. The common time reference,
in most cases, is fictitious and not available for measure-
ment. We can represent the local time ti with respect to
a reference time t as shown in (1) [7]:

ti = t (1 + εi) , (1)

where εi is the time invariant drift of the local clock with
respect to the reference clock. As emphasized earlier,
this drift is natural in clock based systems and must be
included for a complete analysis. As in [2] we model the
ith inverter as an averaged voltage source :

vi(t) = Vi cos(ωti + δi) = Vi cos(ωit+ δi),

where Vi is the voltage amplitude; ωi = ω+ηi is the new
frequency with ηi = εiω and ω is the set-point frequency.
Here ηi is the drift in the frequency at the inverter aris-
ing from individual non-ideal clocks. Since the literature
does not suggest how fast εi varies with time we have
not considered a time varying drift. Using commonly re-
ported values for the clock drift, εi, a frequency drift in
the order of 0.03 Hz (for reference frequencies around 50
or 60 Hz) is to be expected, as seen in Table 1. The table
lists η = εω as well as the corresponding per unit time
scale variable γ = 1/(1 + ε).

Therefore, an approximate steady state drift |εi| of the
order of 10−3p.u to 10−6p.u can be subsequently derived.
It should be noted that the local integration process at
each inverter is affected by the clock drifts. Using (1) we
can redefine the local integrator / differentiator as [7]:

d(·)
dti

= γi
d(·)
dt

:= γi ˙(·),
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Table 1
Drifts in commercial inverters

Reference |η|(Hz) γ

[11] 0.05 1 ± 0.001

[12] 0.025 1 ± 0.0005

[13] 0.05 1 ± 0.001

[14] 0.06 1 ± 0.001

[15] 0.025 1 ± 0.0005

where γi = (1 + εi)
−1. Observe that any local state will

be affected by the clock deviation. Hence, the dynamical
system model must take this into account.

2.2 Droop control and power sharing

According to [1], the amount of real power flowing be-
tween two nodes can be controlled by altering the phase
angle δ between them. This forms the basis of so-called
frequency droop controller as shown in (2).

ωi = γiδ̇i = ω∗ −mi(Pi − P ∗i ), (2)

where mi is the droop coefficient, Pi is the active power
output and (·)∗ represents rated values of the ith inverter.
It is known that active power sharing in frequency droop
controlled inverter based microgrids is achieved by de-
signing the droop coefficients according to a power shar-
ing criteria: miP

∗
i = mjP

∗
j , ∀i, j ≤ n [1]. Deviation in

power sharing between inverters i and j that results from
clock drifts and zero rated powers can be quantified as:

ω∗
(

1

γi
− 1

γj

)
=
miP

s
i

γi
−
mjP

s
j

γj

The values P si and P sj are steady state powers and are
implicitly dependent on system loading. To summarize,
there are two variables that largely impact power shar-
ing. First, the droop coefficient, mi - it can be made
large subject to large frequency deviations and oscilla-
tory transient response. It follows that we must consider
the clock drift in designing the droop control. But, the
clock drifts are unknown and very hard to measure. Sec-
ond, the (relative) clock drifts, γi - which are hard to
measure as well. Therefore, it is very useful to find a
method that ensures proper power sharing and stabil-
ity for arbitrarily small droop coefficients even in the
presence of unknown clock mismatches without needing
to measure extra variables. Another major advantage
is that the network resilience for frequency dependent
loads will then automatically be ensured without any ex-
tra control owing to the small frequency deviation from
small droop coefficients. In an energy and power limited
scenario like a microgrid, proportional power sharing de-
sign will consequently ensure operation longevity.

2.3 Assumptions

The following is assumed in the remainder of this paper:

• there are n inverters connected to the microgrid and
each is interfaced via controllable power electronics
and has a DC link (for example, a storage unit) that
can allow bi-directional power flow. Since optimal siz-
ing of the battery is not the focus of this work, the
battery here can also be considered as an infinite DC
bus;

• the output voltage amplitude of the inverter is held at
a constant value. In other words, the analysis carried
out here does not consider the dynamics of voltage
amplitude and any voltage amplitude control loops
such as, reactive power voltage droop, are neglected
or considered to be at the design equilibrium;

• the line resistances, although present, are assumed to
be small as per the traditional frequency droop con-
troller assumptions. In this regard, if this was not the
case, a virtual impedance emulation technique can be
used to ensure this assumption is valid; and

• the microgrid network is analysed based on Kron re-
duction using an assumption that the loads are con-
stant impedance type. In such a network, Yii is the
self-admittance and Yik is the admittance between in-
verters i and k. Yik = Gik + jBik = |Yik|∠φik where
G is the conductance, B is the susceptance at the sys-
tem nominal frequency and θ is the admittance angle.
It is recommend that the reader refers to [16] for dis-
cussion on implications that arise from different load
types.

2.4 Modified frequency droop

Considering the clock mismatches, dynamics of the
phase angle of the ith inverter in a frequency droop
controlled microgrid are represented by (2) with δi ∈
mod 2π. The feedback power Pi is a local variable mea-
sured at the ith inverter output; ω∗ and P ∗i are the
global and local constants by design, respectively. Since
the feedback is purely local, it can be understood that
there is no requirement for additional communications
to implement the simple frequency droop controller
on an inverter [17]. The local feedback variable is the
measured power, Pi and its measurement often involves
a filter stage. This filter stage introduces first-order
dynamics into the system as follows:

τiγiṖi = −Pi + pi, (3)

where τi is the filter time constant and pi is the actual
output power of the ith inverter which is given by the
power flow equation [18]:

pi = GiiV
2
i +

∑
k 6=i

|Yik|ViVk sin(δi − δk + φik).
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To counter-act the power sharing mismatch introduced
by clock drifts a modified frequency droop control scheme
is proposed in this paper. The proposal makes use of
inter-node communications to include an integral con-
trol action that enables inverters to share power accord-
ing to a sharing criterion even in the presence of clock
uncertainties / mismatches. This kind of communication
architecture is most commonly used in power systems
for secondary control (see [19] for instance).

The integral term zi is defined as:

γiżi = ki
∑
j∈Ni

(miPi −mjPj), (4)

where ki > 0 is the local integral control gain and Ni

represents the set of inverters communicating with the
ith inverter. This integral control term is added as neg-
ative feedback to the frequency droop controller as:

γiδ̇i = ω∗ −miPi +miP
∗
i − zi. (5)

The integral terms have zero initial value and are dis-
connected when communication outages occur (for ex-
ample, mjPj = 0) to retain system stability as in sim-
ple droop control. The importance of this will be made
clear in the later parts of the paper. It is apparent that
there are no extra measurements required to perform
the integral control and the communications associated
are distributed. Thus, the complexity of implementation
is not significantly increased and the system robustness
/ modularity requirements are still well-preserved. The
ability of this control technique to ensure proper power
sharing and stability is discussed next.

3 Stability Analysis

3.1 Stability under consensus control

Define vectors / matrices: 1n := col(1), 0n := col(0),
Pm := col(Pi), P∗ := col(P ∗i ), Pa := col(pi), δ :=
col(δi), V := col(Vi), Z := col(zi), 0n×n := diag(0),
M := diag(mi), Γ := diag(γi), K := diag(ki) and T :=
diag(τp,i).

From equations (3), (4), (5) and using the vector nota-
tion introduced earlier, the microgrid dynamics can be
represented by:

Γδ̇ = ω∗1n −M(Pm −P∗)− Z, (6)

ΓTṖm = Pa −Pm, (7)

ΓŻ = KLcMPm. (8)

Assumption 1 Assume that there exists a steady-state
in the system (6-8) and the equilibrium vectors (a man-

ifold of equilibria) are denoted by δs, Vs, Ps
m and Zs.

The deviation of state vectors from their respective equi-
libria is denoted by the deviation vectors δ̄, V̄, P̄m and
Z̄. Also assume that the equilibrium phase angle vector
is in the n-torus, δs ∈ Tn : {−π, π} s.t π2 > |δsi − δsk +
φik| i, k = 1, . . . , n. The equilibrium phase angle vector
represent synchronous (phase-locked) motion relative to
a synchronous network frequency, ωs.

Linearizing the non-linear power flow term Pa in the
ordinary differential equation (7) with respect to δ at
equilibrium vectors δs,Vs yields a linear dynamical sys-
tem which is much easier to analyse. This linearization
is defined as:

Ln :=
∂Pa

∂δ |δs,Vs
=


∂p1
∂δ1

. . .
∂p1
∂δn

...
. . .

...
∂pn
∂δ1

. . .
∂pn
∂δn


|δs,Vs

.

The matrix Ln is a network Laplacian with positive di-
agonal (lii) and non-positive off-diagonal elements (lik)
as shown in (9) and (10), respectively. The entries of the
network Laplacian obey condition (11).

lii =
∑
i6=k

aik cos(δsi − δsk + φik), (9)

lik = −aik cos(δsi − δsk + φik), (10)

lii = −
n∑

k=1,k 6=i

lik, (11)

where aik = V si V
s
k |Yik|. The matrix Ln has a simple

eigenvalue that is zero and the remaining eigenvalues
have a positive real part [20]. It is also important to note
that the vector 1n forms the basis of Ln’s kernel i.e., for
any vector w = β1n, β ∈ R \ {0} we have Lnw = 0n.

Assumption 2 We assume that the power measure-
ment low-pass filter coefficients of each inverter system
are identical, i.e., T−1 = fIn. We also assume that the
integral control gains are identical i.e., K = kIn.

Following linearization and embedding the assumption 1
and assumption 2 into (6-8) yields the closed loop micro-
grid model that reflects the dynamics around the mani-
fold of equilibria. It is given by,

(I3 ⊗ Γ)


˙̄δ

˙̄Pm

˙̄Z

 =


0n×n −M −In

fLn −fIn 0n×n

0n×n kLcM 0n×n


︸ ︷︷ ︸

:=F


δ̄

P̄m

Z̄

 , (12)

where ⊗ denotes Kronecker product. The eigenvalues of
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state transition matrix F defined in (12) will predomi-
nantly determine the stability of the modified frequency
droop controller based microgrid around the manifold of
equilibria.

Theorem 3 (Eigenvalues under consensus control)
Suppose that σi is the ith the eigenvalue of the matrix
product MLn and similarly, µi is the ith eigenvalue of
the matrix product LcMLn. Consequently, the matrix
F in (12) possesses (3n − 2) eigenvalues that have a
negative real part for a choice of k given by:

k < f min
>0
<
(
σi
µi

)
. (13)

In stable steady state proportional power sharing is also
achieved amongst sources in the microgrid.

Proof: We utilize the arguments explored in [21, 19] for
our proof. Firstly, in stable steady state, the integral
controller ensures that the power shared between invert-
ers meets the prescribed power sharing criterion. Recall
that the matrix Lc is the communication Laplacian with
positive eigenvalues along with one zero eigenvalue. Con-
sequently, in steady state we have,

0n = kLcMPs
m ⇐⇒ MPs

m = ν1n ⇐⇒ miP
s
i = mjP

s
j ,

where ν ∈ R \ {0} is a constant for all the inverters
i, j ∈ n and is based on the initial conditions and network
aggregate load. To prove the second part of our claim, we
operate on the linear state transition matrix F. Consider
the characteristic equation of F given by,

det(λFI3n − F) =

∣∣∣∣∣∣∣∣
λFIn M In

−fLn (λF + f)In 0n×n

0n×n −kLcM λFIn

∣∣∣∣∣∣∣∣ .
Using identities from [22], we have

det(λFI3n − F) = det(Q(λF)),

where

Q(λF) = λ3F + fλ2F + fλFMLn + fkLcMLn. (14)

To compute the eigenvalues, let v ∈ Cn be any vector
with v∗v = 1. Left multiplying the characteristic poly-
nomial (14) by v∗i and right multiplying by vi, ∀i =
1, . . . , n, yields

Φiλ
3
F,i +Πiλ

2
F,i + ΨiλF,i +Σi = 0, (15)

where Φi = 1, Πi = f , Ψi = fv∗i (MLn)vi and Σi =
fkv∗i (LcMLn)vi, ∀i = 1, . . . , n.

• When v1 = ψ1n, ψ ∈ R \ {0} we have v∗1MLnv1 =

0 and v∗1LcMLnv1 = 0, by definition. Consequently
(15) becomes:

λ2F,1(Φ1λF,1 +Π1) = 0.

This implies that λF,11,2 = 0 are the two zero eigenval-
ues of the matrix F. The third eigenvalue associated

with this eigenvector (λF,13 =
−Π1

Φ1
= −f) is always

negative, by definition.
• The remaining (3n− 3) eigenvalues (λF,i1,2,3 , i =

2, . . . , n) will have a negative real part if and only if

ΦiΣi < ΠiΨi, i = 2, . . . , n. (16)

We can ensure (16) is always satisfied by imposing
bounds on k. We know

ΠiΨi = f2v∗i MLnvi, i = 2, . . . , n,

= f2σi, (17)

from the theorem statement. Based on properties of
matrices Ln, Lc and M we observe that only the vector
1n forms the basis of the kernel of LcMLn. We remark
that this product term has only one zero eigenvalue
since Ln cannot map any non-zero vector to the basis
of its kernel owing to orthogonality of kernel and image
spaces [23]. Therefore, from the theorem statement we
also have

ΦiΣi = fkv∗i LcMLnvi, i = 2, . . . , n,

= fkµi. (18)

Using (17) and (18), we observe that the choice of k ac-
cording to (13) ensures that (16) holds and will conse-
quently result in remaining eigenvalues that only have a
negative real part. 2

Corollary 4 The stability condition for the matrix (I3⊗
Γ)−1F, i.e., the entire system (12) is

k < f min
>0
<
(
σ̄i
µ̄i

)
. (19)

where σ̄i is the ith eigenvalue of Γ−4MΓ−2Ln and µi is
the ith eigenvalue of Γ−5LcMΓ−1Ln.

Proof: Following Theorem 3, observe that the matrix
Γ is an invertible diagonal matrix with positive entries
that are all very close to unity. Making analogous mod-
ifications for (I3 ⊗Γ)−1F it can be shown that (19) will
result in (3n− 2) stable eigenvalues for system (12). For
most practical purposes and moreover, since there is a
lack of information, Γ can be replaced by an identity ma-
trix and design k sufficiently smaller than the condition
(13) to guarantee stability of the system in the presence
of clock drifts. However, the condition (19) makes the
dependency of the eigenvalues on Γ explicit. 2
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3.2 Eliminating redundancy

It has been shown that the linearized closed-loop sys-
tem (12) has two zero eigenvalues. It can also be shown
that the dynamics of the center manifold can be factored
out, thus proving exponential stability. For this purpose
a new state vector, y is defined by utilizing the trans-
lational invariance in phase angle, δ. The elements of y
are given in (20). Redefine z1 as shown in (21) by im-
posing zero initial conditions on all the integral control
variables, zi, i.e., zi(t=0) = 0 and based on the fact that
vector 1n is the basis of the kernel of Lc (by which Z is
defined) and Assumption 2.

y` = δ` − δ1, ∀` = 2, . . . , n (20)

z1 = − 1

γ1

n∑
`=2

γ`z`, ∀` = 2, . . . , n (21)

The evolution of the new state, y` can be written as:

γ`ẏ` = γ`δ̇` − γ`δ̇1
= ω∗ −m`(P` − P ∗` )− z` −

γ`
γ21

∑
`

γ`z`

+
γ`
γ1

(m1(P1 − P ∗1 )− ω∗).

Define:

Znew:= col(z2, · · · , zn), R0 :=
[

0(n−1)×1 I(n−1)

]
,

γnew:= col(γ2, · · · , γn), Γnew := diag(γnew),

V:=

[
m1

γ1
γnew −R0MRT

0

]
and LnRT

0 =
∂Pa

∂y |ys,Vs

.

We also define ȳ = y − ys and Z̄new = Znew − Zsnew,
where ys and Zsnew are the equilibrium vector associated
with y and Znew, respectively. Based on the new defini-
tions, the linearized closed loop system can be given by

U


˙̄y

˙̄Pm

˙̄Znew

 =


0(n−1)×(n−1) V

−γnewγ′new
γ21

− I(n−1)

LnRT
0 −fIn 0n×(n−1)

0(n−1)×(n−1) kR0LcM 0(n−1)×(n−1)


︸ ︷︷ ︸

:=Fnew


ȳ

P̄m

Z̄new

,

where U = diag(Γnew,Γ,Γnew). The matrices F and
Fnew represent the same modified frequency droop con-
trolled system, albeit the latter having the redundant
variables removed. It can be proved that this system is
devoid of the zero eigenvalues by showing Fnew has a
non-zero determinant. The determinant of Fnew can be
calculated using [22]:

det(Fnew) =

∣∣∣∣−γnewγ′newγ21
− I(n−1)

∣∣∣∣
∣∣∣∣∣ LnRT

0 −fIn

0(n−1)×(n−1) kR0LcM

∣∣∣∣∣
Since k and f are greater than zero by definition, we

v1

0.02 + j0.2Ω

v2

12.5Ω

12.5Ω

Fig. 1. Kron reduced two inverter microgrid with parameters
Vi = 250

√
2 V, P ∗

i = 0W, ω∗ = 2π50rad/s, f = 10Hz and
Lc = [1 − 1;−1 1].

have:

det(Fnew) ∝
∣∣∣∣−γnewγ′newγ21

− I(n−1)

∣∣∣∣ ∣∣R0LcMLnRT
0

∣∣ (22)

By induction, we can show that the magnitude of the first
term in (22) is 1+(γ22+. . . γ2n)/γ21 which is monotonously
increasing with n and always greater than one for values
of γ considered in this paper. The last term in (22) is ob-
tained using Cauchy Binet’s determinant formula [23].
Since the basis of the kernels of Ln and Lc cannot be
mapped through the matrices RT

0 and R0, respectively,
we can say that the determinant of this term is never
zero. The remaining is a product of non-zero values prov-
ing det Fnew 6= 0.

Remark 5 We have demonstrated that the manifold of
equilibria is locally attractive, and by construction of equi-
libria we can prove that proportional power sharing can be
achieved on the equilibrium points. The zero initial con-
dition of the integral control variables is not detrimental,
but is a use case, as the actual distribution of the phase
angle vectors depends on the initial condition and any
other initial condition will satisfy the arguments explored
but may require work to prove.

4 Simulations

To validate our proposal, we simulated the network
shown in Figure 1. Power sharing deviation for various
droop coefficients and clock mismatches is demonstrated
in Figure 2. As shown in Figure 2 (a) small droop coef-
ficients and large drifts cause large power sharing error.
Although the power sharing error is small with smaller
drifts as shown in Figure 2 (c), it still exists. With the
help of modified frequency droop, the power sharing
error of any magnitude can be corrected in quick time
as shown in Figure 2 (b,d).

According to condition (13) any value of 0 < k < 5 will
achieve stability and equal power sharing for the given
network. Hopf bifurcation behaviour is shown when k =
5 and the system is rendered unstable for any values of
k > 5. This is shown in Figure 3 using the frequency
difference, (ω1 − ω2).

5 Conclusion and future work

We have shown that power sharing in droop controlled
inverters is very sensitive to uncertainty in frequencies
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γ2 = 0.9998.

that might arise from clock drifts. We proposed a modi-
fied frequency droop controller which is based on inter-
node communications. It has been shown that the con-
trol design introduced as supplementary to droop con-
trol can provide better steady state performance. Con-
ditions are derived to guarantee in the presence of the
proposed controller. Our control technique is robust to
measurement uncertainties since there are no extra mea-
surements involved. Standard secondary frequency con-
trol techniques may under-perform in the presence of
clock drifts. Analysis and design of secondary frequency
controllers that are robust to clock drifts will be ad-
dressed in future research. Although we have not consid-
ered communication delays and voltage amplitude mis-
matches in this work we appreciate their relevance and
aim to address them in our future research.
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