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Abstract—A multi-resolution approach to dynamic pro-
gramming is presented which reduces the computational
effort of solving multi-stage optimization problems with
long horizons and short decision intervals. The approach
divides an optimization horizon into a series of sub-
horizons, discretized at different state space and temporal
resolutions, enabling a reduced computational complexity
compared to a single-resolution approach. The method is
applied to optimizing the operation of a residential energy
storage system, using real 1-minute demand and rooftop
PV generation data. The multi-resolution approach reduces
the required computation time, allowing optimization to be
re-run more frequently, increasing the robustness of the
receding-horizon-control approach to forecast errors. In an
empirical study this increases the cost-saving offered by a
2kWh behind-the-meter battery energy storage system by
120% on average, compared to an approach using a single
fine-grained resolution.

Index Terms—Energy storage, optimal operation, temporal
resolution.

I. INTRODUCTION

THE increasing penetration of non-dispatchable dis-
tributed renewable generation reduces the opera-

tional flexibility of electrical power systems. One ap-
proach to regain some operational flexibility is the in-
troduction of distributed energy storage systems (ESSs).

The time-series dynamics associated with ESS make
optimizing their operation challenging, especially when
these dynamics, and the value-propositions of ESSs,
exist over different timescales. For example, frequency
regulation services are typically settled in intervals of
seconds to minutes, energy is traded on an interval of
several minutes, shifting of renewables requires forecast-
ing ahead several hours, and battery degradation occurs
over a time-scale of months to years. For many practi-
cal operational optimization problems receding horizon
control is an attractive approach, as forecasts are only
available a finite distance into the future, and are subject
to forecasting errors.

Within such a receding horizon control framework,
dynamic programming (DP) is a powerful and flexible
approach to optimization, especially for the operation of
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ESSs, where the state-of-charge provides a natural state
variable. DP is straightforward to implement, usually
quick to solve, and flexible with regards to form of
the objective and constraints of the problem. However,
a key decision in the set up of a DP is the choice of
discretization interval, both regarding the state space
(state-of-charge) and the temporal resolution (number
of stages in a horizon). Small intervals lead to more
accurate solutions, but take longer to compute.

In fact, an increase in temporal resolution means that
an increased state space resolution is also necessary (to
maintain resolution of the power at which the battery
is operated), so this also means an increased decision-
space. If the horizon length is kept the same, an n-
fold increase in temporal resolution results in an or-
der n3 increase in computational effort per horizon.
Additionally, if we seek to implement only a single
interval decision before re-solving the optimization (as is
typical with receding-horizon-control), the time available
to find a single horizon solution is reduced by a factor
n. Therefore, the computational difficulty increases with
the fourth power of the inverse of the interval length.

Moving to higher temporal resolutions represents a
scalability challenge to the discretized DP approach. This
is addressed by considering a horizon which is made
up of multiple linked DPs, of variable temporal and
state space resolution. The problems are linked by inter-
polating the ‘minimum-cost-to-go‘ (i.e. value function)
from the initial stage of one program, onto the state
space of the final stage of the preceding program. This
is illustrated in Fig. 1.

This work addresses some shortcomings of existing
methods proposed to optimize the operation of ESSs.
The contributions of this paper are to:

(i) introduce an approach to solving the scalability
problem of discretized DP optimization of ESS
operation at high temporal resolutions (Section III);

(ii) apply this approach to an empirical application
of behind-the-meter residential ESSs using real 1-
minute household demand and PV generation data
[1] (Section IV);

(iii) carry out sensitivity studies to determine the re-
quired horizon-length and state space and temporal
resolutions for this application (Section VI);

(iv) empirically evaluate the effectiveness of the multi-
resolution approach in a realistic computationally-
constrained setting, (Section VI-D).
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Fig. 1: Illustration of Multi-resolution Dynamic Program
for a single horizon, with three DPs (DP0, DP1, DP2) each
representing a sub-horizon

II. BACKGROUND

Dynamic programming has been used extensively for
the operational optimization of energy storage systems
– for example a recent review describes ten DP-based
approaches to the operational optimization of microgrids
[2]. However many of the approaches require the battery
state-of-charge (which is effectively a continuous quan-
tity) to be discretized into a number of discrete intervals.
An accurate representation of the underlying problem
requires the use of a large number of small intervals, but
this increases the computational complexity of solving
the resulting DP problem.

In [3] Codemo et al. present four algorithms of varying
complexity and their performance when optimizing the
operation of an energy storage system subject to demand
with a known statistical distribution, and a convex time-
invariant cost of imports. They illustrate that under
certain conditions the optimal policy can be described
as a simple function of the charge level, and the current
local net load. Unfortunately, such a simplification is
unlikely to be possible for a system with time-varying
costs, a complex battery degradation model, and con-
sideration of multiple markets into which a battery can
bid its services. For such scenarios being able to directly
implement a DP method in an online setting is desirable.

Kamyar and Peet [4] apply multi-objective dynamic
programming to optimize the operation of a residential
energy storage system considering households with a
time-of-use tariff and a peak-demand charge, whilst
also considering the degradation of the battery energy
storage system. Their approach to dealing with the non-
separable peak-demand term is valuable; however their
results assume perfect foresight of demand / PV profiles,
and their simulations are run at a relatively coarse time
interval of 1-hour.

[5] develops a stochastic DP approach which can

optimize the operation of distributed energy storage
for up to four uses: energy arbitrage, ancillary services
(frequency regulation), backup energy, and relief of dis-
tribution constraints. This modeling is performed on an
hourly time-step, and makes use of a two-step solution
procedure; in the first step a discretized state space dy-
namic program is solved, and in the second step a mixed
integer linear program is solved to find near-optimal
decisions on a continuous state space. As noted in [6],
resolving the full value potential of a residential energy
storage system requires simulation and optimization to
be performed on an interval of at most a few minutes.

Song et al. [7] use a DP approach to optimize the op-
eration of a hybrid energy storage system consisting of a
battery and super-capacitor for powering an electric bus.
They find that the optimal charging profile determined
by DP can be well approximated by a simple rule-based
controller, however this varies between the two driving
cycles considered, and would also be altered if a different
battery degradation model were considered. Song et
al. explore a rule-based controller for online operation
due to the computational tractability challenges of DP,
however in the present paper we propose an approach
to making DP more computationally tractable so that it
can be directly applied online.

Computational tractability is a well-known challenge
when solving a discretized approximation of a prob-
lem with an underlying continuous state space. This
has motivated two broad approaches; (i) Approximate
Dynamic Programming (ADP, see for example [8]) and
related approaches which do not attempt to evaluate
the value function over the entire {state, stage} space,
but rather sample a large number of paths through this
space and approximate the value of a decision in a Monte
Carlo style approach, and (ii) intelligent approaches to
discretization.

Intelligent approaches to discretization includes a
range of methods seeking to find the most effective
means of discretizing the state space in a particular
problem. For example in [9] Munos and Moore examine
various methods of selecting which areas of a state
space should be refined when using a variable-resolution
approach to solving optimal control problems. They
consider top-down approaches to choosing which cells
of their state space representation to split (i.e. which
areas to refine), and focus on a variety of possible
refinement criteria. They find that for low-dimension
problems refinement based on the value-function alone
perform well, but for higher-dimension problems it was
necessary to have refinement criteria which depend on
novel non-local measures which they term influence and
variance.

Liang et al. [10] use a multi-scale DP approach to
classify the boundary between tissue layers in images
of arteries, during which a coarse-scale image is first an-
notated with an approximate location of the boundaries,
before a finer-scale image is then passed through another
DP. In a similar vein, Lo et al. [11] use multi-pass DP to
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optimize the operation of an ESS. Each pass refines the
previous by a factor of two, but searches only in the
vicinity of the optimal found from the previous pass, so
only local optimality is guaranteed.

In [12] temporal-aggregation techniques are consid-
ered to reduce the computational complexity of mixed
integer linear programming scheduling problems. In
these methods multiple consecutive time intervals are
combined into a single interval to reduce the number of
decision variables of the problem.

In many existing studies a multi-scale approach is
proposed because it is demonstrated that some areas
of a problem’s state space need to be described at a
finer resolution in order to achieve near-optimal control.
However, in this study we consider a multi-resolution
approach because we are solving this DP within a
receding-horizon-controller, and therefore only the first
decisions, made at the finest resolution considered, are
implemented without recourse. Our approach can be
considered analogous to a project Gantt chart, which has
greatest detail for those activities due to take place in the
near-term. It is not that activities further into the future
are less important, or can be decided more coarsely, it
is rather that describing them in greater detail can wait
until further in the future.

The multi-resolution dynamic programming approach
proposed in this paper can be considered a form
of “adaptive data processing” as discussed briefly in
Section III.D of [13], a classical paper reviewing the
procedures available for improving the computational
tractability of DP methods.

There are also a similar set of methods in the literature,
sometimes referred to as multi-scale optimization; [14]
provides an example of how such a method can be
applied to the optimization of home energy systems. In
a multi-scale approach an outer/strategic optimization
problem is solved on a coarser time-scale (for example
hours) and produces outputs/decisions which are pro-
vided as inputs to an inner optimization problem which
is solved on a finer time-scale (of minutes or seconds).
This approach is distinct to the multi-resolution process
presented here, where a single optimization problem,
which has stages of differing lengths, is solved.

III. MULTI-RESOLUTION DYNAMIC PROGRAM (MRDP)

This formulation could be applied in any setting where
discretized state space DP presents tractability issues,
but is intended to be applied within a receding-horizon-
controller, wherein decisions further into the horizon
are subject to recourse, motivating their description at
coarser time and state space intervals. The approach is
illustrated graphically in Fig. 1, and formalized in Algo-
rithm 1. For now we consider the number of DPs within
a horizon, as well as the length and interval-length of
each of these programs to be given. An approach to
selecting these parameters is presented in Section VI.

Algorithm 1 Multi-Resolution Dynamic Programming
Notation:

N No. of sub-horizons (dynamic-programs) in horizon;
Tn No. of intervals in nth sub-horizon;
∆tn Duration of intervals in nth sub-horizon;
x, x0 state variable, and its value at start of the horizon;
∆x State space discretization at finest temporal resolution;
zt Time-series value of interest during interval t;
Xn Set of reachable state space values in sub-horizon n;
V∗n,t,x Optimal cost-to-go from stage t of sub-horizon n, in state x;
u∗n,t,x Optimal action from stage t, of sub-horizon n, in state x.

Require: N, x0, ∆x
1: N ← {0, . . . , N − 1}

Require: Tn, ∀n ∈ N , ∆tn, ∀n ∈ N , zt, ∀t ∈ {0, . . . , Tn− 1}, ∀n ∈ N
2: V∗N−1,Tn ,x ← 0, ∀x ∈ XN−1 . Zero cost-to-go from end of MRDP
3: V∗N−1,0,x , ∀x ∈ XN−1 ← solve(DPN−1) . Solve last DP
4: for n = N − 2, . . . , 0 do
5: V∗n,Tn ,x , ∀x ∈ Xn ← interp(V∗n+1,0,x) . Interpolate cost-to-go
6: V∗n,0,x , ∀x ∈ Xn ← solve(DPn) . Solve sub-horizon

7: return V∗0,0,x0
, u∗0,0,x0

.

Cost-to-go & optimal action
for the 1st stage of 1st DP.

In Algorithm 1 the time-series of interest, zt, may
be a vector of values over the horizon, and may be
forecasts; for example in the case study (Section IV)
we consider forecasts of rooftop PV generation and
household demand, and the known values of future
import/export tariffs. Before being solved, each dynamic
program, DPn, is initialized; in particular we find the
set of sets of reachable states by the tth stage of the
program, Xn,t. Note that if the rate of state change is
limited in a particular problem (as is the case with rate-
of-charge constraints for an ESS) the full state space does
not need to be enumerated at the finest resolution as
illustrated in Fig. 1. solve(DPn) solves the nth DP using
backwards induction from a cost-to-go assigned to the
terminal states of that program, V∗n,Tn ,x. Finally, interp()
linearly interpolates the cost-to-go from the initial stage
of one DP to the ending stage of the previous DP, as
illustrated at the top of Fig. 1.

For the case-study we consider, the cost-to-go is natu-
rally a smooth function of the battery’s state-of-charge,
so linear interpolation was appropriate. Problems with
other cost-functions might have less well behaved cost-
to-go curves, and may require different approaches to-
wards interpolation. One example would be a use case
having a large penalty for being at less than a particular
required state-of-charge (e.g. in an application where the
battery is to be used for satisfying critical loads during
a black-out). In such scenarios, the transition from the
initial stage of one DP to the final stage of the previous
DP needs to be considered differently.

In Algorithm 1 we have maintained generality of any
DP which can be solved by backwards induction. In the
next section we formulate a MRDP for the specific case
of optimizing the operation of a residential ESS.
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IV. OPTIMIZING RESIDENTIAL ESS OPERATION

Multi-resolution dynamic programming is now ap-
plied to the operation of a behind-the-meter residential
ESS, building on previous work [15]. The tariff structure
for our case study (Table I)1 is typical of those available
to residential customers in several states of Australia.
It suggests two ways in which energy storage might
offer a household cost-savings: by minimizing export of
roof-top PV generation to the grid for minimal return,
and by minimizing imports from the grid during peak-
price times. These savings need to be traded off against
the increased degradation of the battery ESS, which has
associated with it a fraction of the replacement cost of
the battery.

TABLE I: Tariff Structure

Export Tariff, re
t 0.05 $/kWh flat rate

Import Tariff, ri
t 0.40 $/kWh 7:00AM – 10:00PM,

0.20 $/kWh at other times

A. Problem Formulation

Optimizing the operation of a residential ESS to mini-
mize total cost to the householder is a stochastic sequen-
tial decision making problem, and we base our presen-
tation on the canonical model in Powell and Meisel [16].
For these types of problems, it is necessary to specify five
components; the state variable: St, the decision variable: ut,
any exogenous information: wt revealed as time progresses,
the transition function: St+1 = SM(St, ut, wt+1) defining
the system dynamical model, and the objective function.

The objective function of the base problem is to min-
imize the total cost of electricity paid by the household
over a period of consideration, which ends at time
index P (P needs to be sufficiently large so that the
average cost over the period is representative – for a
residential electricity customer a few years would likely
be sufficient).

min
π∈Π

Eπ
P

∑
t=0

C(St, Uπ
t (St)) (1)

where Π is the set of implementable policies, and
C(St, Uπ

t (St)) gives the cost of electricity in interval t
given that the system is in state St and we implement
the decision ut = Uπ

t (St), under a particular policy π.
a) State variable: our state variable consists of the

physical state-of-charge of the battery qt at the start of
interval t, and two measured state variables: the per-
interval energy output from a roof-top PV system pt−1,
and the per-interval local energy demand dt−1 (at time
t these energy levels are only known from the previous
interval t− 1). Finally it also consists of the forecasts of
energy demand (p̃t) and PV output (d̃t) into the future as
required by any look-ahead policy (which in the present

1$ symbol refers to Australian Dollars throughout this paper

study are univariate, so based on the time-history of
previous states only). This gives us a state variable2:

St = (qt, pt−1, dt−1, p̃t, d̃t) (2)

b) Decision variable: there is a single decision vari-
able, bt: the amount of energy to discharge from the
battery during interval t, in kWh. We assume that this
decision is made in terms of the kWh state-of-charge of
the battery, with b̂ giving the energy exchanged with
the rest of the system accounting for charge/discharge
efficiencies:

b̂t :=
{

bt/ηc bt < 0
btηd bt ≥ 0 (3)

where ηc, ηd ∈ (0, 1] are charging and discharging effi-
ciencies of the battery (assumed fixed).

Any excess/shortfall of energy given the flows from
the PV system and from/to the battery is made up by
grid imports, gt. The decision bt is subject to rate-of-
charge and state-of-charge constraints of the battery:

bt ≤ qt −
¯
q (4)

bt ≥ q̄− qt (5)
bt ≤ b̄∆t (6)

bt ≥ −¯
b∆t (7)

where
¯
q, q̄ are the minimum and maximum charge-levels

for the battery (in kWh), b̄,
¯
b are the maximum discharge

and charge rates of the battery (in kW) and ∆t is the
duration of an interval (in hours).

c) Exogenous information: there are two pieces of
stochastic information, the change in PV output and
demand between interval t− 1 and t: ∆pt, ∆dt.

d) Transition function: the transition function models
the state-of-charge dynamics of the battery, and the
evolution of the PV output and demand levels:

qt+1 = qt − bt (8)
pt = pt−1 + ∆pt (9)
dt = dt−1 + ∆dt (10)

e) Objective function: the total cost is made up of the
costs for any grid imports, less reward given for any grid
exports, plus the cost of battery degradation:

C(qt, bt) = ri
t[gt]

+ − re
t [gt]

− + RBD(qt, bt) (11)

where [·]+ and [·]− represent taking the positive and
negative component of the argument, gt = dt− pt− b̂t is
the import of energy from the grid during interval t, and
ri

t, re
t are the import and export price of energy during

interval t (see Table I). R is the per-kWh replacement
cost of the battery, B is the capacity of the battery, and
D is the fractional degradation of the battery resulting
from discharging bt kWh from the battery from an initial
state-of-charge of qt (see Appendix B for details of the
degradation model used).

2The forecast variables consist of forecasts over the horizon required
by the look-ahead policy
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This completes the formulation of the underlying
problem. Due to the continuous and stochastic nature
of the variables and quantities involved (battery state of
charge, expected generation, expected demand, etc.), an
exact solution to the problem is intractable. However,
[16] provides some discussion of various classes of im-
plementable policies which can be used to find good
solutions to these kinds of problems.

In the present study we compare three approaches.
This first, used for benchmarking purposes, is a simple
rule-based controller which charges the battery with any
excess PV output (subject to rate-of-charge and state-of-
charge constraints) in order to avoid exporting energy to
the grid at unfavorable rates. The second, also for bench-
marking, is a receding horizon control approach in which
the cost over a finite horizon is to be minimized and a
small number of intervals of horizon-optimal decisions
are implemented before re-solving the model. We solve
an individual horizon using dynamic programming, in
which both the temporal horizon and the battery’s state-
of-charge are discretized into intervals. The third, which
is one of the main contributions of this paper, is a
receding horizon control approach similar to the one
above, but with a novel multi-resolution approach to
the solution of the discretized dynamic program, which
allows a longer horizon problem to be solved without
running into computational tractability issues.

B. Solution using MRDP

We replace the full problem specified in Section IV-A
with a sequential series of analogous optimization prob-
lems which only consider T intervals, and determine
a profile of T optimal charging decisions. For each of
these, the first one or more decisions are implemented,
and subsequently a revised optimization is solved for
a future start time with an updated starting state-of-
charge and with updated forecasts. For each individual
optimization problem, the point forecasts for that hori-
zon are treated as if they are realized values (i.e. the
solution is deterministic). However, in the evaluation of
the solution we use the true realized values of demand
and generation. In other words, forecast error is included
as part of the evaluation.

We define the following additional notation, with
[units] given where appropriate. The superscript d is
used to distinguish between the discretized decision
variables bd, and the underlying continuous decision
variable b.

xn,t integer representing the charge-level of ESS in
sub-horizon n, at the start of stage t;

Xn,t set of reachable integer charge-level states by
the start of stage t, in sub-horizon n;

x0 the starting integer charge-level for the horizon;
∆qn the charge-increment of sub-horizon n [kWh];
bd the decision variable: No. of integer charge-

levels to drop;

Bn,t(x) set of feasible discharge decisions during
stage t, in sub-horizon n, from state x;

C(xn,t, bd) immediate cost of making discharge deci-
sion bd from state/stage xn,t [$];

V(xn,t) optimal horizon cost-to-go of state/stage
xn,t [$].

Algorithm 2 Solving the nth DP
Require: Xn,t, ∀t ∈ {0 . . . Tn − 1}
Require: V(xn,Tn ), ∀xn,Tn ∈ Xn,Tn

1: for t ∈ {Tn − 1, . . . , 0} do
2: for xn,t ∈ Xn,t do
3: v∗(xn,t)← ∞
4: for bd ∈ Bn,t(x) do
5: v← C(xn,t, bd) + V(xn,t − bd)

6: if v < v∗(xn,t) then
7: v∗(xn,t)← v
8: bd∗(xn,t)← bd

return v∗(xn,0), bd∗(xn,0), ∀xn,0 ∈ Xn,0

The method for solving the nth DP is then given in
Algorithm 2. For each stage of the sub-horizon, and each
reachable state to be in by that stage, we exhaustively
search for the feasible decision with the lowest cost-
to-go. Cost-to-go is the immediate cost for making a
decision during that stage, plus the cost of being in the
resultant state at the start of the following stage. The
immediate cost of making discharge decision bd, from
state/stage xn,t is analogous to the base problem cost
function, (11):

C(xn,t, bd) := ri
n,t[d̃t − p̃t − b̂]+ − re

n,t[d̃t − p̃t − b̂]−

+RBD(xn,t, bd)
(12)

where the battery fractional degradation, D, can depend
upon the battery’s state of charge,

¯
q + xn,t∆qn, and

the battery discharge decision, bd, (see Appendix B for
details).

b̂t can be defined as follows:

b̂ :=
{

bd∆qn/ηc bd < 0
bd∆qnηd bd ≥ 0

(13)

where bd is the number of intervals to discharge the
battery by, and ∆qn is the charge-level interval for the
sub-horizon.

C. Case-Study Details

1) Battery Properties: are given in Table II. The degra-
dation model is based on that presented in [17], with
modifications made to suit the high temporal resolution
of this study (see Appendix B).

2) Tariff Structure: is given in Table I, and is typical of
those available in parts of New South Wales, Australia.



6

TABLE II: Battery Properties

Parameter Symbol Value Units

Nominal Capacity B 2 kWh
Usable Charge Range [

¯
q, q̄] [0.3, 1.9] kWh

(Dis)Charging efficiency ηc, ηd 0.948 -

Maximum charge current Ich,max =
−

¯
b/B 2.0 C

Maximum discharge current Id,max =
b̄/B 2.0 C

Nominal charge current Ich,nom 1.0 C
Nominal discharge current Id,nom 1.0 C

Nominal Cycle Life CLnom 3650 No.
Nominal State of Charge SoCav,nom 55 %

Nominal Depth of Discharge DoDnom 80 %
Maximum battery life 15 years

Battery Replacement Cost R 600 $/kWh
Initial State-of-Charge 50 %

Degradation parameters See [17] & Appendix B

TABLE III: Horizon Properties

Parameter Value

No. of sub-horizons 3
Finest state space resolution 512 states/kWh

Total Horizon Length 1440 min
Simulation Interval 1 min

3) Demand and PV Generation Data: for this study
are from [1]. This dataset contains 1-minute household
demand and roof-top PV generation for a few hundred
homes over several years. For the period 2013-2014,
complete data was available for 71 houses, of which
16 were randomly selected for inclusion in the results
presented in Section VI-D.

4) Horizon Properties: The baseline properties of the
horizons considered in this study are given in Table III –
chosen via sensitivity studies (Sections VI-A and VI-B).

5) Benchmark Controller: Performance of the MRDP
approach is compared to a single-resolution DP, and a
simple set-point controller. The set-point controller seeks
to maximize the PV-self-consumption of the household
by charging the battery by pt − dt kWh during interval
t (subject to rate- and state-of-charge constraints).

6) Forecasts: Two forecast models are considered. The
first is a Perfect Foresight (PF) forecast with zero error.
This is not implementable, but is useful in setting a
prescient upper-bound on the cost-saving potential of
a battery. The second is a standard auto-regressive fore-
cast, commonly used in time-series forecasting (details
in Appendix C).

V. COMPUTATION TIME FOR MRDP

In this section we analyze the time-complexity of
MRDP, given the number of sub-horizons, and for each
the number (and length) of intervals within it.

The computation time is directly proportional to the
total number of feasible decisions considered. In Al-

gorithm 2 this is the number of times statement 5 is
reached. The number of feasible decisions O is:

O := ∑
n∈{0,...,N−1}

∑
t∈{0,...,Tn−1}

∑
x∈Xn,t

|Bn,t(x)| (14)

Working from right-to-left we are summing over the
number of feasible discharge decisions (the cardinality
of the set B), for each state x to be in, for each stage
t of each sub-horizon n. The total number of decisions
is dependent upon the starting state of charge, because
this affects which states are reachable by each stage of
each sub-horizon (i.e. the sets Xn,t, see Appendix A for
details). We are interested in the maximum computation
time, so consider the worst-case where the starting state-
of-charge is as close as possible to a 50% state-of-charge3.
The formal definitions of sets Xn,t and Bn,t are consigned
to the Appendix, they are simply confined by a battery’s
rate-of-charge and state-of-charge constraints.

The computation time required as a function O was
determined by solving many MRDP problems of differ-
ent sizes, and fitting a straight line to the computation
times as a function of O. This determined that on
average each decision required 1.21µs, when solved on a
single core of an Intel© Core™ i7-6700HQ CPU. When
simulating the real-time operation of the battery, and the
associated optimization problem, we assume a 16-fold
increase on this computation time to allow for:

i) More modest computational resources being avail-
able in a dedicated embedded controller;

ii) Some values available directly during simulation
will need to be estimated from measured data which
will have associated over-heads;

iii) There may be communication delays between dif-
ferent pieces of embedded equipment;

iv) It is necessary to ensure the computation is always
complete within the required time-frame.

For long horizons with many intervals the maximum
optimization time for an embedded controller exceeds a
single interval (1-minute in the present study). In these
cases it is necessary to implement multiple solutions
from a single horizon optimization in an ‘open-loop’
fashion (i.e. without incorporating updated forecasts).
The advantage to the MRDP approach is that a long
horizon can be considered at a substantially reduced
computational cost.

The benefits of lower computation time are two-
fold, and are illustrated in Fig. 2, the center of which
shows the maximum computation time for a single
horizon optimization. During this computation time op-
timal decisions from the previously-computed horizon
are implemented in an open-loop fashion (i.e. multiple
decisions are implemented without feedback of realized
outcomes of the forecast variables). As the computation
time increases there are two impacts: firstly, the num-
ber of intervals which need to be implemented open-
loop increases, reducing the robustness offered by the

3The rate-of-charge and rate-of-discharge constraints are the same
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Now

Maximum
compute time

Optimization
horizon

Intervals from
previous solution
implemented
’open loop’

Realized values
available up until
start of compute
time

Forecasts required
from 1 compute time
into future until 1
optimization horizon
after that

Fig. 2: Illustration of forecast and optimization timeline

recourse of receding-horizon-control. Secondly, there is
an increasing time-lag between the most-recent realized
value of a stochastic variable which is available, and
the first time-interval for which a forecast is required.
Both these effects mean that as the computational time of
an optimization increases the performance of receding-
horizon-control will be reduced. However, given the
horizon-myopia of our formulation it is necessary to
have a long enough horizon that operation of the battery
is optimized effectively. There is a trade-off between
computational tractability, and the approximation error
associated with formulating our problem as a discrete
state space DP. The nature of this trade-off will depend
on the specific problem; in particular it will be sensitive
to how well the stochastic variables can be forecast.

VI. RESULTS

Referring to Fig. 1, the horizon length, the number
of sub-horizons, and the state space and temporal res-
olution of each sub-horizon need to be chosen. The
following empirical procedure is summarized in this
section:

i) Determine the horizon length required to achieve an
acceptable optimality gap;

ii) At this horizon length, determine the state space
and temporal resolution to achieve an acceptable
optimality gap;

iii) Split the horizon into three sub-horizons, with a
two-fold factor reduction in state space and tempo-
ral resolution between sub-horizons;

iv) Increase the factor reduction in step iii) until the
solution time is less than a single interval.

In the following sections when we refer to a net
cost saving, we mean the reduction in operational cost
relative to a case in which no battery is present (i.e.
excess PV generation/demand is met immediately from
grid imports/exports), net of the degradation cost asso-
ciated with operating the battery. The sensitivity studies
are completed assuming unconstrained computational
resources (i.e. a single interval of the optimal solution
is implemented regardless of how long the optimization
takes).

A. Selecting Horizon Length
We first decide how far into the future an individual

optimization horizon should look. To the best of the au-
thors’ knowledge there is no general-purpose approach

to selecting an appropriate horizon length for a receding-
horizon-control problem. Several theoretical results have
been established which under certain assumptions can
guarantee the stability and optimality gap of a finite
horizon receding-horizon-control solution to an infinite
horizon problem, provided the horizon is ‘sufficiently
large’, see [18] for example.

For the ESS operational optimization, there are two
value-propositions which must be traded-off; maxi-
mizing solar-self-consumption, and minimizing imports
from the grid during peak price times. Typically house-
hold peak demand will occur around 6-8 PM, and peak
PV generation at about midday. Peak- and off-peak
tariffs occur on a 24-hour period. The finite capacity
of the battery needs to be divided between these two
value streams, so we might expect a horizon length
of at least 12-hours is required to achieve near-optimal
performance.

The top panel of Fig. 3 summarizes an empirical study
in which we increase the horizon length, and assess
the net cost saved for four households during a 7-day
simulation using real demand and PV data. Also plotted
are best-fit curves of the form y = A − Be−Cx. The
parameters of this fit were used to estimate the cost-
saving for an infinitely-long horizon, and the horizon
length required to achieve a saving within 0.5% of this
was found. For the four houses considered this varied
between a 800-minute and 1260-minute horizon. Based
on these results a horizon length of 1-day (1440-minutes)
was chosen for the remainder of our analysis.

B. Selecting State Space & Temporal Resolution
The underlying state-of-charge of a battery is an essen-

tially continuous variable. However, to allow the use of
a discretized state space DP approach to optimization,
it is necessary to chose some discretization resolution.
The results of an empirical study are summarized in
the middle panel of Fig. 3, which shows the net cost-
saved during a 7-day simulation of four houses with an
increasingly fine state space resolution. Also plotted are
fits of the form y = A− Be−Cx. The parameters of this
fit were used to estimate the cost-saving which would
be achieved with an infinitely-fine resolution, and the
resolution required to achieve a cost-saving within 0.5%
of this was found. For the four houses considered this
varied between 275 and 580 states per kWh. Based on
this a resolution of 512 states per kWh was used for the
remainder of our analysis.

An analogous process was used to determine the
required temporal resolution, the results of which are
summarized in the bottom panel of Fig. 3. Based on
the parameters for the plotted fits we determined a
resolution of 60-minutes per hour (i.e. using the full
resolution of the 1-minute dataset) was necessary.

C. Generalising to Other Datasets
The horizon parameters chosen from the sensitivity

studies above are specific to the present case-study and
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data-set. To understand what drives the sensitivities in
general, we looked at the time-series demand and PV
data for the customers with the most and least sensitivity
to each of horizon length, state space resolution, and
temporal resolution.

No particular pattern was spotted when looking at
customers who were most/least sensitive to the horizon
length considered; indeed the four customers included
in the sensitivity study had rather similar sensitivities
to horizon length (Fig. 3, top panel). We surmise that
for this case-study horizon length sensitivity is driven
primarily by non customer specific features such as the
tariff structure.

We found that the customer whose net cost saving was
most sensitive to state space resolution had a demand
profile which varied over only a small range of values;
as a result the impact of a coarse kWh-interval control
of the battery was more significant.

The customer whose net cost saving was most sen-
sitive to temporal resolution had the most rapid and
frequent changes in their demand profile; as a result
controllers which implement a single control action for
multiple intervals impacted their cost-saving more sig-
nificantly (this is dealt with in more detail in [6]).

In general, the choice of horizon parameters for other
datasets and applications will therefore be somewhat
dependant on the particular demand and generation
profiles in question (especially their volatility), as well
as the underlying tariff structure (or any other factors
influencing the objective).

D. Performance Improvement using MRDP
The above sensitivity studies assume the availability of

unlimited computational resources for the optimization
(i.e. if the optimization takes more than one interval to
solve, the simulation waits for the result before proceed-
ing). This approach is clearly unsuitable for application
in real-time. We now consider simulations which allow
for the computational capabilities of an embedded con-
troller (see Section V for details).

There is a fundamental trade-off between optimiza-
tion complexity (and the associated computation time)
and the error resulting from the discretized state space
approximation, and the finite-horizon approximation of
the underlying continuous state space and infinite hori-
zon objective function respectively. The main thesis of
this paper is that a simple multi-resolution approach
(illustrated in Fig. 1, and detailed in Algorithm 1) al-
lows for more effective control by choosing a coarser
discretization for the state space for intervals further into
the future. Results suggesting this are illustrated in Fig.
4, where the net cost-saved over a 7-day simulation is
plotted for a number of different methods. Also plotted
are the number of 1-minute intervals which have been
implemented open loop during the simulation to allow
for finite computational resources. From Fig. 4 we see
that using a MRDP approach allows fewer optimal con-
trol actions to be implemented open loop (due to the
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Fig. 3: Net cost-saved for four customers using a 2kWh
battery operated using receding-horizon-control (assum-
ing a perfect foresight forecast) plotted against horizon
length (top), state space resolution (middle) and tempo-
ral resolution (bottom panel).

reduced computation time) which results in improved
performance. For the coarsest resolution horizon, made
up of 16 intervals of 1-minute length, 18 intervals of
8-minute length and 20 intervals of 64-minute length,
the estimated embedded computation time is less than
one interval so only a single interval of the optimized
charging profile needs to be implemented without re-
course, providing the highest possible robustness against
forecast errors.

Results for the perfect foresight forecast were also
produced at different horizon resolutions, however the
performance was similar because there are no forecast
errors necessitating recourse. There was a very slight
reduction in performance for coarser horizons due to
errors when interpolating the cost-to-go from one sub-
horizon to the next. From Fig. 4, we can deduce that a
battery with a replacement cost of $600/kWh would be a



9

borderline economic investment for the households and
tariff structure considered. The best-performing method,
not requiring a perfect foresight forecast, would deliver
$56 of net savings over the year on average (assuming
the simulated week is typical), representing a net return-
on-investment of 4.7%.

E. Sensitivity to Battery Degradation Model

To assess the sensitivity of these results to the choice of
battery degradation model, we repeated the simulations
whilst assuming a fixed degradation model in which
each kWh of energy charged to or discharged from the
battery causes the same amount of degradation. Using
this simple degradation model we found: (i) The simple
set-point controller was able to achieve performance
almost as good as a perfect foresight controller; and
(ii) MRDP-based methods using realistic forecasts had
a negative net cost saving for horizons with a large
number of short stages (due to their long computation
times which necessitated the use of more open-loop
control). Both of these results underline the importance
of taking battery degradation into account in these kinds
of studies; and the second observation further confirms
that using a multi-resolution approach can offer a per-
formance advantage in computationally-constrained set-
tings.

F. Implementation and Limitations

The proposed multi-resolution dynamic programming
approach is relatively straightforward to implement in
practice, and the results presented in Fig. 4 are from
simulations in which realistic forecasts are used from
forecast models only receiving input data available up-
until the point in time at which the optimization com-
putation would need to start. These are subject to a
restricted computational constraint to simulate the re-
duced capability of embedded hardware. In general, DP-
based methods are typically straightforward to code,
test, and implement, and often easier to understand and
debug than other optimisation methods – some of which
may rely on highly optimized third party solvers that
make deployment on embedded hardware less straight-
forward.

A limitation of the work is that it assumes the degra-
dation model for the battery is known and deterministic
(subject to known battery operating parameters), i.e.
the degradation model assumed for the optimization
matches that used for the simulation. In practice battery
degradation is a stochastic process, and there are likely
to be non-negligible modeling errors in any proposed
degradation model. Modelling battery degradation is in
general a difficult problem and improved models are the
subject of ongoing work. However, one advantage of the
type of solution presented here is that new and updated
degradation models are typically straightforward to plug
into the DP-based problem formulation.
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Set-Point (Continuous)
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[1440 x 1min]
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MRDP: Multi-Resolution Dynamic Programming

Fig. 4: Net Cost Saved from operating battery for 7 days
using various methods. Plots show the average and ±1
standard deviation over 16 customers considered. The
use of MRDP allows fewer open loop intervals to be
implemented, resulting in improved performance.

VII. CONCLUSIONS & FURTHER WORK

A multi-resolution approach to solving discretized
state space DPs has been introduced, and its benefits
for applications in which optimization is carried out
via receding-horizon-control were discussed. The use of
a multi-resolution approach allows optimization over
a longer horizon than would be possible if the entire
horizon were enumerated at the highest temporal and
state space resolution, whilst keeping the computation
times manageable. As a result optimizations can be re-
run more frequently, minimizing the number of control
intervals which need to be implemented in an open loop
fashion. This delivers the full benefit of the recourse
offered by receding-horizon-control. The performance
benefit offered was demonstrated empirically in the
application of operating a small battery ESS in a home,
with simulations based on real 1-min demand and roof-
top PV generation data for several homes [1]. If the
full 1-day horizon is enumerated at 1-minute resolution,
the large computation time necessitates the open-loop
(recourse-free) implementation of 40-intervals of the op-
timal charging profile. The loss of robustness to forecast
errors results in poor performance. However if this one-
day horizon is divided into a number of sub-horizons
of reducing state space and temporal resolution, a 1-day
optimization can be solved fast enough, so that it can be
re-run every interval. This resulted in an approximately
120% improvement in closed-loop performance, on av-
erage, over a 1-week period for the 16 houses simulated.

There are alternative approaches to dealing with the
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tractability problem of a discretized state space DP as the
control interval gets smaller. A common approach is to
have a layered optimization/control approach wherein
a long-term optimization solved at a relatively coarse
interval determines set-points or other parameters for a
much simpler real-time controller. Further work could
compare such an approach to the multi-resolution ap-
proach presented here. In the present study we have
used a simple approach to aggregating a long multi-
stage horizon (with 1440 1-minute stages) into a series
of sub-horizons of different resolutions. Further work
could examine more principled approaches for choosing
the timing and nature of the resolution steps, perhaps
making use of some of the criteria presented in [9].
Once a series of coarsened sub-horizons have been
chosen, note that the original problem is replaced by
an approximation of it in which a single decision is
applied/implemented for the duration of the aggregated
stages.

APPENDIX

A. Definition of Sets Xn,t, Bn,t

The sets Xn,t enumerate the states which can be
reached by each stage, t, of sub-horizon n. The gen-
eration of these sets for a particular problem instance
is described below. For convenience a zero-indexing
convention is used, i.e. the first stage and sub-horizon
have index 0. The starting charge-level of the first stage
of the first sub-horizon is known to be exactly equal to
the starting charge-level state, X0,0 := {x0}.

We then define upper and lower bounds for subse-
quent stages and sub-horizons as follows:

x̄n,t :=

⌊
min(q̄−

¯
q, x0∆qn − ¯

b(∑t
i=0 ∆tn + ∑n−1

j=0 Tj∆tj))

∆qn

⌋
,

∀t ∈ {0, . . . , Tn}, n ∈ {0, . . . , N − 1}

¯
xn,t :=

⌊
max(0, x0∆qn − b̄(∑t

i=0 ∆tn + ∑n−1
j=0 Tj∆tj))

∆qn

⌋
,

∀t ∈ {0, . . . , Tn}, n ∈ {0, . . . , N − 1}

where b·c returns the largest integer smaller than its
argument – in other words the maximum and minimum
charge-levels which can be reached if we make the most
charging and discharging decisions respectively. We then
define the charge levels which can be reached by the start
of a particular stage, t, of a sub-horizon, n as:

Xn,t :={x ∈N |
¯
xn,t ≤ x ≤ x̄n,t}

∀t ∈ {0, . . . , Tn}, n ∈ {0, . . . , N − 1}

where N is the set of non-negative integers. The sets
Bn,t(x) enumerate the feasible battery discharge deci-
sions which can be made given that we are in state x
at the start of stage t in sub-horizon n. The generation
of these sets is similar and is omitted for brevity.

B. Throughput-based degradation model

Previous work [15] made use of a cycle-based degra-
dation model (first proposed in [17]). A simplifying as-
sumption made to allow that model to be used in a real-
time operational optimization was to assume that each
discrete (dis)charge decision represented a (dis)charge
half-cycle. This was an acceptable approximation when
considering the 30-minute resolution of that study, but
significantly distorts degradation when applied to 1-
minute data.

To resolve this we consider instead a throughput-
based degradation model, in which it is assumed that
kWh-throughput is the primary factor driving battery
degradation. The degradation due to an individual
(dis)charge decision is then computed as:

D(qt, bd) =
|bd∆qn|

2qnomCLnomnCL(Id)nCL(Ich)
(15)

where qt = xn,t∆qn +
¯
q is the initial battery state-

of-charge [kWh] in interval t (of sub-horizon n being
considered), bd∆qn is the amount of energy [kWh] to
discharge from the battery during interval t, qnom is
the charge/discharge associated with the nominal cycle
(qnom = DoDnomB, where B is the nominal capacity of
the battery [kWh] and DoDnom is the depth-of-discharge
associated with the nominal cycle [%]), CLnom is the
number of cycles to failure under nominal conditions,
nCL are the normalized cycle-life functions detailed in
[17] and D is the fractional degradation of the battery.
Id and Ich are the charging and discharging currents
implied by charge decision bd; for discharge decisions
(bd > 0) the charging current is assumed to take its nom-
inal value Inom

ch and the discharge current is computed as
Id = |bd∆qn|/(B∆tn), where ∆tn is the interval in hours,
and Id is the discharging current measured in C.

The numerator of (15) is the charge/discharge energy
[in kWh] associated with decision bd, and the denomi-
nator is the total energy throughput which is available
over the battery’s life, modified by the nCL functions to
allow for operation at non-nominal conditions (i.e. fewer
kWh-throughput are available when operating at higher
charge/discharge currents).

This model is similar to that described in [15] and first
presented in [17], with two changes. Firstly, we use en-
ergy throughput as the dominant determinant of degra-
dation in place of charge/discharge cycles. Secondly,
the influence of the cycle-dependent factors (SoCav; the
average state-of-charge of a cycle, and DoD the depth-
of-discharge of a cycle) has been ignored. This is a
simplification of the degradation model (it is assumed
that the lifetime energy throughput of a battery is inde-
pendent of the amplitude and central state-of-charge of
operational cycles). Modification of the DP formulation
to accommodate cycle-based degradation is an area of
further work which is being explored. In addition we
consider a minimum per-interval degradation to model
calendar battery degradation (as was done in [15]).
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TABLE IV: Mean forecast errors for day-long forecasts
over 7-days for four households

Forecast Method Demand RMSE [kW] PV RMSE [kW]

R forecast package 0.69 0.58
Six-Parameter 0.48 0.25

C. Auto-Regressive Forecast Model
To forecast future values of demand and PV genera-

tion we consider a simple auto-regressive forecast model.
Demand (or PV output) is assumed to be some linear
combination of the following regressors:

i) Realized value in the previous interval;
ii) Realized value two intervals ago;

iii) Realized value from 1-day ago;
iv) Realized value from 1-week ago;
v) The historic average value for this interval-of-day;

vi) The historic average value for this interval-of-week.
The model is applied as a single-interval forecast

model in a recursive fashion, i.e. if realized values are
not available for any of the regressors they are replaced
by their forecasts in a recursive fashion.

The forecast is trained as follows; for every interval in
the training data-set (in the case study considered above
this is the first year of data, with the second year of
data used for simulations) for which the regressors can
be formed, and the predicted output can be evaluated,
a vector of predictor variables and responses (realized
demand or PV generation) are formed. These are then
used to train a linear regression model to determine
the importance of each of the six parameters (using
least-squares linear regression). Future values are then
predicted by composing a vector of predictor variables
for a target interval (and forecasts of those variables
where a realized value is not available), and these are
multiplied by the coefficients from the training dataset
to produce a forecast for that interval.

Performance of this forecast model was compared to
a fully automated univariate time-series forecasting tool
[19], [20] and was found to perform well. See Table IV
for performance of the two methods on average when
producing forecasts for 1-day horizons over 7-days of
residential demand and PV output for four households
from the considered data-set [1]. The relatively poor per-
formance of the fully-automated forecasting approach is
thought to be due to the high temporal resolution of
the data, and the resulting long seasonal periods (daily
period has 24x60=1440 intervals, and weekly period has
7x1440=10080 intervals).
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