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Abstract—Much research is being conducted into the
potential value of residential energy storage. The temporal
resolution of the analyses carried out in these studies is
typically driven by the available data, which is often only
at 30-minute or 1-hour intervals. This study uses higher
temporal resolution data to examine the effect of input time-
series resolution on the value determined for residential
storage. In the case study considered, an analysis carried
out at a 30-minute interval underestimates the cost-saving
delivered by 5kWh of residential energy storage by 17%
on average, compared to the same battery analyzed at a 1-
minute interval. The sensitivity of storage value to temporal
resolution is found to vary significantly from one customer
to the next. A method for improving estimates of the real-
time value of energy storage using coarser time-series data
is introduced. Finally the impact of temporal resolution on
storage technology selection is also evaluated.

Index Terms—Energy storage, optimal operation, temporal
resolution

I. INTRODUCTION

A. Motivation
Many existing studies (see Table I) use relatively low

resolution temporal data in their analyses of the value
of residential energy storage. Whilst this is a pragmatic
approach, given that a majority of data-sets are only
available at 30-minute or 1-hour intervals, it risks an
incorrect assessment of the true value of residential
energy storage when operated in real time. This paper
seeks to determine how significant this value estimation
problem is, by carrying out an empirical study using
a dataset of the household demand and rooftop solar
photovoltaic (PV) output of several hundred homes from
a dataset sourced in Texas [1] that we consider a good
representation of residential demand and generation.

Considering a realistic Australian scenario in which
a residence has a two-part time-of-use tariff (say, of
$10.40/kWh during peak times and $0.20/kWh at other
times), and a low fixed export tariff (say, of $0.05/kWh),
a householder with a PV system might be able to derive
value from a behind-the-meter battery by maximizing

1Throughout this paper $ refers to Australian Dollars

solar self-consumption (i.e. minimizing export of energy
for minimal return), and tariff optimization (i.e. minimiz-
ing imports during peak-price times). For a 30-minute
interval during which a residence’s demand and PV out-
put match (on average over the interval), a study carried
out on 30-minute resolution data would determine that
the battery would not be operated, and so would not
deliver value during that interval. However, if during
this interval PV output was fluctuating significantly (for
example due to passing clouds, or repeated inverter
drop-outs as a result of local voltage rise) a study
completed at a higher temporal resolution would result
in the battery being charged and discharged repeatedly,
and delivering some saving to the household. This study
evaluates how significant this difference is, as the input
data (local demand and PV output) is aggregated from
an initial 1-minute resolution, up to a 1-hour interval.

B. Contributions & Paper Organization

This work addresses some shortcomings of existing re-
search which evaluates residential battery energy storage
systems. The contributions are to:

(i) Identify the empirical relationship between tem-
poral resolution of input data, and the valuation
of residential energy storage, for real 1-minute de-
mand and PV data [1] (Section III-A);

(ii) Present an approach to approximating the true
real-time operational value of energy storage using
coarser time-series data (Section III-C);

(iii) Evaluate the impact of temporal resolution on the
most appropriate energy storage technology choice
for an application (III-D).

C. Literature Survey

Smart electricity meters which are being installed by
utilities the world over are often capable of recording
domestic electricity consumption at 1-minute intervals,
or finer, but often this data is not kept or made available
to researchers for a variety of reasons:



TABLE I: Time Intervals of studies on IEEE Xplore
matching search: {(value OR evaluation) AND (residen-
tial OR domestic) AND (battery OR “energy storage”)}.

Time Interval of
Demand/RES Data [minutes]

No. of
References References

≤ 1 5 [2]–[6]
10 4 [7]–[10]
15 9 [11]–[19]
30 5 [20]–[24]
60 30 [25]–[54]

1) Bandwidth limitations mean that it is not always
feasible to communicate the higher resolution data
to the outside world (but only the lower resolution
data required for billing);

2) High temporal resolution data presents a privacy
risk, as it is possible to determine a great deal about
a household from their 1-minute consumption data;

3) Data-warehousing and management costs increase
with higher temporal resolution, as a result of the
increased data-volume and throughput rates.

As a result much of the publicly available consump-
tion data is at 30-minute or 1-hour temporal resolution.
For example, Table I presents all of the references found
on IEEE Xplore by using the search terms {(value OR
evaluation) AND (residential OR domestic) AND (bat-
tery OR “energy storage”)} for which discrete interval
data was used in analyses2. It suggests that the majority
(66% in a sample size of 53 papers) of studies use data
with 30-minute intervals or longer.

A number of existing studies consider the question
of how the temporal resolution of input data can affect
the conclusions of analyses; these are reviewed briefly
here. In [55] Urquhart et al. consider the change in
copper-loss estimates in the distribution network, when
simulations are carried out at varying levels of temporal
aggregation. They find that between simulations at 1-
minute, and those at 30-minute intervals, a 40% un-
derestimation of losses can occur; and that the level of
underestimation varies significantly between customers.
Kools and Phillipson, [56], study the impact of data
temporal granularity on the optimal planning (sizing)
of distributed energy resources, concluding that for the
planning problem 1-hour resolution data is sufficient. In
[57] Hawkes et al. evaluate the importance of tempo-
ral resolution when determining the optimal sizing of
a micro-combined heat-and-power system, concluding
that using 5-minute data produces substantially different
results to the 1-hour interval data used in many other
studies.

The low temporal resolution used in many studies
considering the value of residential energy storage, and
the significant sensitivity to temporal resolution seen in

2Applying this search to papers’ meta-data returned 151 papers. The
relevant ones using discrete interval data are included in Table I.

closely related research, suggests the sensitivity of resi-
dential energy storage valuation to temporal resolution
is worthy of further study.

II. METHOD

A. Analysis
We consider a battery that is owned by, and operated

in the interests of, a residential electricity customer who
has a rooftop PV system. The battery is operated using
a simple rule-based controller which seeks to charge the
battery with any excess solar PV output (subject to state-
of-charge and rate-of-charge constraints). This control
law, and the resulting value-estimation of the battery,
are described in Algorithm 1. We choose a PV-self-
consumption-maximizing controller for two reasons: (i)
It is typical of the capability and configuration of storage
systems being installed in Australia today and (ii) With
prevailing Australian tariff structures, minimizing ex-
ports is the most financially attractive value proposition.
This simulation and analysis is then repeated at multiple
temporal resolutions, i.e. we complete this analysis at the
finest resolution possible given an available data-set, and
then accumulate that data into coarser intervals to mimic
the data-set only being available at a coarser resolution.

The simulation is detailed in Algorithm 1. The inputs
required are: {d, p} the time-series of demand and PV
output for the household being considered, suitably
aggregated to the interval-length of interest; {Pi

t , Pe
t }, the

tariff structure (see Table II); and the properties of the
battery {Crate, B, ηc, ηd} (see Table III). For each interval
we calculate the excess demand (d̂← dt− pt), and if it is
positive we satisfy it by discharging the battery (subject
to the battery’s rate-of-charge and state-of-charge con-
straints), and if it is negative (i.e. we have excess PV
output during the interval) we charge the battery so
that no energy is exported to the grid (again subject to
battery operational constraints). During the simulation
we keep track of the net cost (cost of grid imports
less money received for grid exports) of operation with
a battery, C, and also what the cost would be if no
battery were available, CNB (i.e. if excess demand is
satisfied directly by grid imports). The cost-saving for
a particular {customer, battery, interval length} instance
is then estimated as CNB − C.

The Matlab code used to simulate the battery’s oper-
ation is available in a public repository to allow other
researchers to reproduce our results [58]

B. Case Study Data
The following specific data is used for our case-study:
1) The Tariff Structure: for this study is given in Table

II and is typical of those available to homes connected
to the National Electricity Market in Australia.

2) Battery Properties: are given in Table III, and are
representative of commercially available home-storage
offerings in Australia.



Algorithm 1 Set-Point Operation & Value Estimation
Require: d, p . Demand/PV time-series
Require: Pi

t , Pe
t . Import and export tariffs

Require: Crate, B, ηc, ηd . Battery properties
1: b← B/2 . Initialize battery to half-full
2: C ← 0 . Variable to count cost with battery
3: CNB ← 0 . Variable to count cost without battery
4: for t = 1 . . . Nintervals do
5: d̂← dt − pt . Excess demand
6: CNB ← CNB + min(d̂, 0)Pi

t −min(−d̂, 0)Pe
t

7: if d̂ > 0 then
8: e← min(d̂/ηd, Crate, b) . Energy from battery
9: g← d̂− eηd . Energy from grid

10: b← b− e . Update battery state-of-charge
11: C ← C + gPi

t
12: else
13: e← min(−d̂ηc, Crate, B− b) . Energy to battery
14: g← −d̂− e/ηc . Energy to grid
15: b← b + e . Update battery state-of-charge
16: C ← C− gPe

t
return CNB − C . Value estimate of battery

TABLE II: Tariff Structure

Tariff Symbol Value

Export (all times) Pe
t $0.05/kWh

Import (7am - 10pm) Pi
t $0.40/kWh

Import (other times) Pi
t $0.20/kWh

TABLE III: Battery Properties

Property Symbol Value [units], Notes

Usable
capacity B {1.0, 5.0, 10} [kWh]

Charging rate Crate 1.0 [hr-1], kW charging
rate divided by B

(Dis)Charging
efficiency ηc, ηd 0.96 []

3) Demand and PV Generation Data: for this study
are taken from the Pecan Street Dataport database [1],
which we consider a representative dataset for residen-
tial demand and generation. 71 customers had complete
data for 2013-2014 (525,600 one-minute readings per
year), and are included in this study. The source data is
recorded as kW power for the 1-minute metering period.
This is converted into kWh consumed/produced over
the minute (scaling by 1/60). To study the battery val-
uation determined at different temporal resolutions, the
data was then aggregated over several interval lengths:
{1, 2, 5, 10, 30, 60} minutes, by summing over an
appropriate number of 1-minute intervals.

III. RESULTS

A. Impact of Interval Length on Battery Value

Fig. 1 illustrates the reduction in observable battery
value with increasing temporal aggregation level (i.e.
reducing temporal resolution). Two conclusions can be
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Fig. 1: Histogram of values for a 5kWh battery with data
aggregated to increasing interval lengths. Source data
from [1].

drawn: (i) For some customers, reducing temporal res-
olution can significantly affect the battery value deter-
mined (by over 40%); and (ii) The extent to which the
resolution of the input data affects the resulting battery
value varies significantly between customers. Similar
plots were produced for 1 and 10 kWh batteries, and the
percentage value hidden at reduced temporal resolution
is greatest for smaller batteries, as might be expected.

B. Interval-Length Sensitivity Between Customers

To determine what characteristics of an individual
customer’s demand/PV profile cause a high or low sen-
sitivity of storage value estimate to temporal resolution,
we look at the time series PV and demand data for the
customers with greatest and least sensitivity. These are
plotted in Fig. 2 which shows that, as might be expected,
the customer with most value hidden at higher temporal
resolution has a demand signal with significant high
frequency content, and that with the least hidden value
has a relatively smooth demand profile.

C. Estimating real-time Value from Coarser Data

Fig. 1 demonstrates that a significant number of cus-
tomers would underestimate the value which energy
storage might offer them, if they considered coarser
temporal resolution data only. This raises two questions:

1) Is 1-minute data fine enough?: It is not possible to
address this question definitively without access to finer
temporal resolution data. However, looking at the curves
in Fig. 3 they appear to be smooth, and approximately
linear for the finest {1, 2, 5}-minute resolutions. This is
consistent with the results found in [55] using a dataset
of UK households. If we extrapolate these linear trends
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Fig. 2: Time series of demand and PV output for the
customer with the most (top) and least (bottom) value
hidden at higher temporal resolution. Data from [1].
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Fig. 3: Value of 5kWh battery with data aggregated to
{1, 2, 5, 10}-minute intervals. Source data from [1].

to an interval length of zero minutes (i.e. the value of a
battery operated in continuous time) for a 5kWh battery
we get a value of between 1% and 3% greater than the
value determined at a 1-minute interval.

2) Can a better estimate of the fine-resolution value be made
from coarse data?: In many settings only coarser temporal
data is available, motivating an attempt to estimate the
true value of energy storage from coarse data. To attempt
this we randomly divide the data into a training set
of 45 customers, with the remaining being used as a
test-set. We then treat the value determined using data
at {30, 60}-minute intervals as regressors (i.e. assum-
ing 30-minute input data is available), and the value
determined at a 1-minute resolution as the regressand,
and use least-squares linear regression to determine the
coefficients of a model (using the training set). Finally, for
the test customers we estimate the 1-minute value of the
battery in two ways; firstly using a simulation with data
at 30-minute intervals, and secondly by estimating value
at {30, 60}-minute intervals (aggregating the input data
before running the analysis as required) and then using

−30 −20 −10 0 10
0

5

10

Battery Value Error relative to 1-minute Value [%]

N
o.

of
O

cc
ur

en
ce

s
(t

es
t

se
t)

30-min Data
Regression Model

Fig. 4: Histogram of errors of 1-minute value of 5kWh
battery using value-estimates from 30-minute data only
(solid), and from the linear regression model using {30,
60}-minute interval performance as inputs (hatched).
Source data from [1].

the linear regression model. The battery value errors are
then normalized to the true 1-minute battery value and
are plotted in Fig. 4. The results from 30-minute interval
data consistently underestimate the battery value (con-
sistent with the results from the fourth panel of Fig. 1),
with a mean error of -17% and a standard deviation
of 6.4%. Using the regression model results in relative
errors with a mean of +1.1% and a standard deviation
of 5.5%. Using the regression model has reduced bias
without increasing the variance of errors in trying to
estimate the continuous-time value of a battery based
on only 30-minute interval input data.

D. Impact of Temporal Resolution on Technology Selection

The main thesis of this paper is that the value estimate
of residential energy storage is sensitive to the temporal
resolution of the data used. A related question is whether
the resolution of data might affect the choice of energy
storage technology. To examine this we consider a simple
analysis of the cost-saving of an energy storage asset,
relative to its purchase cost. Table IV gives properties
for a particular battery and supercapacitor energy stor-
age product. We assume that the degradation of an
energy storage asset is driven only by the cumulative
charging and discharging kWh as it is operated. In
practice, battery degradation is more complex, and a
proper treatment needs to consider many more factors
(see for example [20]). In Table IV we see that neither
technology strictly dominates. The battery has a lower
cost per kWh-capacity, whereas the supercapacitor has a
higher charge/discharge rate, and a lower cost per kWh-
throughput, if its large number of cycles can be utilized.

To assess the impact of temporal resolution on tech-
nology selection we simulate the operation of an energy
storage asset with the properties outlined in Table IV and
compare the cost-saving offered by the storage device,



TABLE IV: Battery & Supercapacitor Properties

Parameter Battery Supercapacitor
Reference device BMZ ESS3.0 Eaton XLR-48R6167-R

Data Source [59] [60], [61]
B 5.4 kWh 0.041 kWh

Cycle Life 5,000 1,000,000
Crate 1.5 2880
Cost $7,700 $1,700

Cost/kWh-capacity $1,426 $41,463
Cost/kWh-throughput 0.143 $/kWh 0.021 $/kWh

TABLE V: Battery & Supercapacitor Performance at Dif-
ferent Temporal Resolutions

Interval [min]
Battery 1 2 5 10 30
Value [$] 579 572 554 528 486
Throughput [kWh] 3678 3632 3525 3376 3131
Degradation [] 0.068 0.067 0.065 0.063 0.058
Depreciation [$] 525 518 503 481 446
Net value [$] 55 54 51 47 40
ROI [%] 0.71 0.70 0.66 0.61 0.52

Interval [min]
Capacitor 1 2 5 10 30
Value [$] 35 32 27 19 7.2
Throughput [kWh] 211 190 158 111 43
Degradation [] 0.0026 0.0023 0.0019 0.0014 0.00053
Depreciation [$] 4.4 3.9 3.3 2.3 0.9
Net value [$] 31 28 23 16 6.3
ROI [%] 1.8 1.6 1.4 0.96 0.37

to the costs implied by its degradation. These results
are summarized in Table V. This analysis shows that the
net return on investment (ROI: the cost saving delivered
by operating the storage for 1-year, less the annual
depreciation of the asset, divided by the asset’s initial
capital cost) is higher for the battery at lower temporal
resolutions, and for the capacitor at higher resolutions.
It is important to note that this is a preliminary analysis,
and does not consider the ‘calendar’ degradation of the
battery or capacitor, inclusion of which might result in
a higher ROI of the battery at all resolutions (due to the
relatively short service life of capacitors). Nonetheless
this analysis is of interest, as it shows that using input
data with sufficient temporal resolution is important in
selecting the right energy storage technology.

IV. CONCLUSION & FURTHER WORK

We have demonstrated that the temporal resolution of
input data can significantly affect the value determined
for residential energy storage, at least for the empirical
case of the users considered in the present study. We
have shown that analyses carried out with data at 30-
minute or 1-hourly intervals can significantly under-
estimate the cost-saving which energy storage is able
to deliver. An assessment carried out using 30-minute
interval data underestimates the cost-saving potential
of a 5kWh battery by 17% on average, compared to a
study using 1-minute data. We have also presented an

approach to improving the estimation of the real-time
value of energy storage, when only coarser data is avail-
able. Finally, we have demonstrated that the temporal
resolution of input data can affect the relative assessment
of different storage technologies. It is important that
existing and future studies which are completed with
coarser resolution data (which is more readily available
to researchers) are interpreted in light of these findings.
The operational optimization techniques studied in the
literature also need to be reviewed for their suitability
of application at higher temporal resolutions. A finer
temporal resolution will increase the complexity of many
predictive optimization approaches whilst reducing the
time available for computation in an on-line setting.

The findings in this paper are inherently empirical,
therefore will not necessarily apply in other settings;
where energy storage is operated for different objectives,
with different tariff structures, and for users with differ-
ent load patterns. Indeed, a key finding from this study
is that the sensitivity of energy storage value estimates
to temporal resolution of input data varies significantly
from customer to customer, even within a single dataset.
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