
Accounting for Forecast Uncertainty in the
Optimized Operation of Energy Storage

Khalid Abdulla, Kent Steer, Andrew Wirth, Saman Halgamuge
Melbourne School of Engineering, University of Melbourne

Melbourne VIC 3010, Australia
Email: kabdulla@student.unimelb.edu.au

Julian de Hoog
IBM Research – Australia,

19/60 City Road,
Melbourne VIC 3006, Australia

Abstract—This paper presents and empirically evaluates
two approaches to accounting for forecast uncertainty when
attempting to optimize the operation of a residential battery
energy storage system. Data-driven methods are used for
forecasting, and dynamic programming, within a receding
horizon controller, is used for operational optimization. The
first method applies a discount factor to costs incurred
at later intervals in a deterministic dynamic programming
control horizon, provided with point forecasts. In the second
approach probabilistic (scenario) forecasts are generated using
Lloyd-Max quantization of the distribution of forecast errors,
to allow the use of a stochastic dynamic programming for-
mulation. These methods are applied to maximizing the cost-
savings delivered from a residentially owned and operated
battery, using a case-study of residential consumers with roof-
top PV systems in New South Wales, Australia. It is found
that scenario forecasts can offer an 8% increase in annual cost-
savings, on average, when using a univariate multiple linear
regression forecast.

I. INTRODUCTION

There is increasing interest in the role which distributed
energy technologies, such as residential energy storage,
embedded generation, and demand response, can play in
the transformation of the way we generate, transmit, store
and consume electrical energy. Distributed control of
these technologies is attractive for two reasons; it avoids
the need to install and maintain extensive communication
infrastructure, and it maximizes the resilience offered by
a more distributed electrical infrastructure.

For distributed control to be most effective, it is often
necessary to forecast future values of, for example, the
demand of a single customer, or small collection of cus-
tomers, or the output of a single roof-top PV system. It is
well known that using data-driven approaches to forecast
demand and PV output are more effective at large scales,
and that forecasts for small-scale aggregations suffer from
large forecast errors [1], [2]. As a result it is helpful
to consider this forecast uncertainty when attempting
operational optimization of distributed energy assets.

This paper is concerned with operational optimization
of a battery energy storage system which is owned by,
and operated in the interests of, a residential customer.
Under the tariff structure assumed, which is typical of
residential customer tariffs in Australia, there are two
ways in which a battery can be operated to reduce the

electricity costs of a customer who must satisfy a local
demand, and has a roof-top PV (Photo-voltaic) system.
The first is solar-self-consumption, i.e. minimizing the
export of excess PV generation to the grid which is
rewarded a price much lower than the import cost. The
second is time-of-use tariff optimization, i.e. minimizing
grid imports during peak-price times. To maximize the
cost-saving offered by a battery, it is necessary to forecast
both the local demand, and the PV output, to allow good
charging decisions to be made.

There is an extensive literature of methods for perform-
ing optimization under uncertainty, Sahinidis [3] provides
a broad and relatively recent review of state-of-the-art
methods, including operational optimization under fore-
cast uncertainty, which is of interest in the present study.
The operational optimization of an energy storage sys-
tem is inherently a multi-stage problem, and lends itself
to solution using Dynamic-Programming (DP), with the
battery state-of-charge offering a natural state variable.
As a result DP is a popular choice for energy storage
operational optimization [4]–[8].

To be of practical interest, operational optimization
must be formulated in a way that can be applied in an
on-line setting. A natural way of doing so is to formu-
late the problem as a receding horizon controller. The
present authors have previously formulated a receding
horizon controller to optimally operate a residentially
owned battery, with each horizon solved using dynamic
programming [9].

Formulating the problem as a receding horizon con-
troller immediately offers some resilience to forecast er-
rors, as control decisions further into the control horizon
(where forecasts are likely to be less certain), are subject
to recourse. However, it is likely that performance can
be improved if forecast uncertainty is explicitly consid-
ered when finding the horizon-optimal solution. In this
paper we apply two methods in an attempt to improve
the operational optimization of energy storage, subject
to forecast uncertainty. The following contributions are
made in terms of optimizing the operation of energy
storage:

(i) A discount factor is applied within the DP solution



Fig. 1. Block diagram showing positive convention for energy flows. bt
is controlled. bt and gt take negative values when energy is transmitted
to the battery and grid.

of a receding horizon controller, and its effectiveness
at accounting for forecast uncertainty is evaluated
for an empirical problem instance using real PV and
residential demand data [10];

(ii) A principled (Lloyd-Max Quantization based) ap-
proach to selecting forecast scenarios from a distri-
bution of forecast errors is presented, and is evalu-
ated in terms of the performance of a stochastic DP
making use of the resulting scenario forecasts;

(iii) The empirical performance of these two approaches,
when applied with simple univariate forecasting
methods, are demonstrated.

The remainder of this paper is structured as follows:
Section II presents the operational optimization approach
used, and the two approaches considered for dealing with
forecast uncertainty; Section III provides details of the
empirical case study considered, and presents the results
obtained from simulations; and Section IV draws some
conclusions.

II. METHOD

This section presents a Stochastic Dynamic Program-
ming (SDP) approach to optimally operate an energy
storage system, this formulation has been previously
presented, [9], and is reproduced here for completeness.
A residential user with a rooftop PV system is considered,
the sign convention for energy flows is provided in Fig. 1.
From Section II-D, onwards, the approaches to accounting
for forecast uncertainty, which extend previous work and
are a contribution of this paper, are presented.

A. Definitions [units where appropriate]

∆t duration of an interval [hours];
T the set of intervals in the horizon, represented

by integers {0, 1, . . . , T − 1} (there are T inter-
vals; index T is used to refer to the ending state
of the final interval);

dm
t forecast demand during interval t in scenario

m [kWh];
pn

t forecast generation during interval t in sce-
nario n [kWh];

P(.) marginal probability of outcome (.);
ct cost of buying grid-supplied electricity during

interval t [$1/kWh];

1Throughout this paper $ refers to Australian Dollars

rt reward for exporting electricity to the grid
during interval t [$/kWh];

ηc, ηd charge, discharge efficiency of the battery;
qt amount of energy in the battery at the start of

interval t (above the lowest allowable amount
of energy) [kWh];

B usable battery capacity [kWh];
bt decision variable - energy to withdraw from

the battery during interval t, (measured at the
battery, i.e. net of losses when charging, and
includes them when discharging) [kWh];

bm(ax|in) maximum and minimum decrease in energy
of the battery over an interval (i.e. bt ∈ [bmin,
bmax]) [kWh].

B. Assumptions

To simplify the presentation of the method, and to
keep the problem tractable, the following assumptions
are made:
• Self-discharge losses in the battery are negligible;
• Power converter losses are lumped with battery

(dis)charging efficiency;
• Battery (dis)charging losses are treated as fixed per-

centage power losses;
• Realized generation and demand are independent,

conditional on forecasts made at t = 0;
• Demand and generation are stage-wise independent,

conditional on forecasts made at t = 0.
Assuming stage-wise independence dramatically sim-

plifies the problem formulation. The independence of
realized values, conditional on forecasts made at the
beginning of the horizon, is reasonable for early intervals
of the horizon (as no information is ignored). Later in
the horizon, it is less justified (because if it were possible
to re-forecast for later intervals, given realized values
of earlier ones, the forecasts would likely change). This
increasing approximation error is somewhat mitigated
by using this SDP formulation within a receding-horizon
controller; any decision made t intervals into the horizon
has t − 1 opportunities for recourse before it is imple-
mented.

C. SDP Formulation

The optimization is formulated as a SDP, with the
energy in the battery, qt, providing a complete description
of the system state, and the interval within the horizon,
t, representing the stage. qt is discretized, therefore the
amount of energy transferred in/out of the battery during
an interval, bt, is chosen from a finite set of values.

Denote by CTGt(qt), the minimum expected cost-to-
go from stage t given that the battery is charged to qt
kWh at the start of interval t. Also, denote by STCt(bt)
the state-transition-cost for stage t, if control action bt
is chosen (STC also depends on the realized values
of generation and demand, but these are omitted for



brevity of exposition). The recursive relationship for the
minimum cost-to-go is then:

CTGt(qt) = min
bt
{E[STCt(bt)] + CTGt+1(qt − bt)} (1)

where E[.] takes the expected value (over possible realiza-
tions of PV output, pt and local demand, dt). Included in
(1) is the state update rule; if one discharges bt kWh from
a battery which contains qt kWh, it results in a battery
containing (qt − bt) kWh, one interval later.

The amount of energy provided to the grid when
bt kWh of energy are withdrawn from the battery is
represented as b̂t. This can be calculated as:

b̂t =

{
bt/ηc bt < 0
btηd bt ≥ 0 (2)

where ηc, ηd ∈ (0, 1] are the charging and discharging
efficiencies of the battery, respectively.

The expected value of the state transition cost is then:

E[STCt(bt)] =
M

∑
m=1

N

∑
n=1

(P(dm
t )P(pn

t )

(ct[dm
t − pn

t − b̂t]
+ − rt[dm

t − pn
t − b̂t]

−)) (3)

where [.]+ represents taking the positive component, i.e.
[x]+ = max(0, x), and analogously [x]− = max(0,−x). In
(3) a sum is taken over possible values of the stochastic
variables, i.e. summing over the M · N possible realiza-
tions of demand and generation in interval t; with each
weighted by its probability of occurrence. The two terms
within the sum are (i) the cost of grid imports, and (ii) the
reward for any grid export (at most one of these terms
can have a non-zero value).

Satisfaction of system constraints is ensured as follows:
• Energy balance is achieved by defining energy from

the grid over interval t as: gt = dm
t − pn

t − b̂t, in (1),
and asserting that the grid can supply or accept the
required amount of energy;

• Charging and discharging rates are kept feasible by
limiting the minimum (most negative) and maxi-
mum values of bt, i.e. bt ∈ [bmin, bmax];

• Battery capacity constraints are satisfied by addition-
ally limiting the minimum and maximum values of
bt for particular charge states, i.e. :

bt ≤ min(qt, bmax)

bt ≥ max(qt − B, bmin)
(4)

The optimization of expected cost-to-go (1) is achieved
using backwards recursion. The minimal cost-to-go from
the end of the last interval in a horizon, CTGT(qT), is
zero for all ending states, qT (there can be no further cost
as the horizon is complete). For each preceding interval,
t = {T − 1, . . . , 0}, and each possible charge-level at the
start of that interval, qt, the feasible discharge decision, bt,
that minimizes (1) is found by exhaustively searching the

finite set of possible values. This process is repeated, mov-
ing backwards through the horizon, until the minimal
cost-to-go from the first interval of the horizon CTG0(q0),
is found (the starting battery charge-level, q0, is known
from the simulation).

This SDP is solved for each horizon as a receding
horizon controller; once solved, the first decision, b0, is
applied in an on-line simulation, and a new solution
is computed one interval later, with the horizon and
forecasts moved forward one interval.

D. Approaches to Accounting for Forecast Uncertainty
In addition to solving the optimization problem using

a receding horizon (enabling recourse of decisions at
intervals later in the horizon), the present work considers
two approaches to explicitly dealing with the inevitable
uncertainty associated with forecasts:

1) Cost Discounting: A common approach in receding
horizon operational optimization is to apply a discount
factor to costs/rewards which are realized at later stages
of the horizon. In the present study discounting is ap-
plied to account for forecast uncertainty. It is noted that
there are other uses for discount factors (e.g. accounting
for time-value-of-money or model approximation errors).
With real forecasts there are two reasons a discount-factor
based approach may be effective; the first is that forecasts
are generally less accurate further into the future, the
second is that the cumulative impact of forecast errors
will mean the costs and benefits further into the horizon
are increasingly uncertain (even if the uncertainty of
forecasts themselves are uniform across the horizon).

To include cost discounting the recursive cost equation
is modified to:

CTGt(qt) = min
bt
{E[STCt(bt)] + β · CTGt+1(qt − bt)} (5)

Where β is the discount factor. This discounts the
cost from interval t by βt, where t ∈ {0, 1, . . . , T − 1}.
The parameter β can be chosen for a particular problem
instance based on, for example, simulation on a historical
data-set.

2) Scenario Forecasts: The second approach considered
to address forecast uncertainty is to look at a number of
scenarios of demand and PV output over the horizon (i.e.
M, N > 1 in (1)). To use the proposed SDP formulation,
it is necessary to express the probability distribution of
stochastic variables as a number of discrete scenarios,
and it is not computationally tractable to consider a large
number of scenarios.

Given that it is necessary to consider only a small
number of forecast scenarios2, N, it is important that
they are chosen effectively, in order to best represent the
continuous probability distribution of possible outcomes.

2For simplicity we consider an equal number of scenarios of PV and
demand, N (resulting in N2 independent scenarios of PV and demand).



To achieve this, Lloyd-Max-Quantization is applied [11],
[12], which is a principled approach that minimizes the
expected squared-error of discretization. It is described
briefly here for the reader’s convenience:

For a given continuous random variable X with prob-
ability density function f (x) (i.e. P(a ≤ X ≤ b) =∫ b

a f (x)dx), which is to be represented as N discrete
scenarios (i.e. with a discretized probability-mass func-
tion), we seek the N − 1 decision boundaries3 {bk}N−1

k=1
and N reconstruction levels {yk}N

k=1 that minimize the
expected squared-error of discretization, known in the
signal processing literature as Distortion:

D = E[(x−Q(x))2] =
∫ ∞

−∞
(x−Q(x))2 f (x)dx =

N

∑
k=1

∫ bk

bk−1

(x− yk)
2 f (x)dx (6)

Where Q(x) represents the quantization of the random
variable X, i.e. :

Q(x) = yk, x ∈ [bk−1, bk), ∀k ∈ {1, . . . , N} (7)

Finding the parameter values {bk, yk} which minimize
Distortion can be done exactly, for any known contin-
uous probability density function f (x), and any chosen
number of quantization levels, N, by making use of the
Lloyd-Max algorithm [11], [12]. Algorithm 1 presents the
Lloyd-Max algorithm applied to a univariate distribution,
but it can be extended to multivariate distributions to
give the Linde-Buzo-Gray algorithm [13]. Algorithm 1
minimizes Distortion, (6), by iteratively solving a pair
of partial differential equations, each of which finds the
parameters bk and yk (respectively) which minimizes
Distortion, whilst keeping the other set of parameters
constant.

E. Univariate Forecasting and Forecast Errors

In this paper only simple univariate forecasting meth-
ods are considered. Univariate forecasts are of particular
interest to the operation of distributed energy systems,
because they can be produced in the absence of additional
communication infrastructure (as they rely on locally
available information only). Two forecasts are considered:

1) Naive (Daily) Periodic (NP): forecasts assume that the
demand/PV output during any interval is identical to
that from 24-hours ago. This crudely captures the major
(daily) seasonal period, and provides a naive benchmark.

3Implicit boundaries of b0 = −∞ and bN = ∞ are included, so there
are N + 1 boundaries, but only N − 1 of them need to be chosen.

Algorithm 1 Selecting the Scenario Values & Probabilities
of Occurrence
Require: N, ε, f (x)

1: yk ← yk0 ∀k ∈ {1, . . . , N} . Initialize4 yk

2: b0 ← −∞, bN ← ∞

3: ∆rel. ← ∞

4: while ∆rel. > ε do

5: bk ← 0.5(yk + yk+1) ∀k ∈ {1, . . . , N − 1}

6: yprev
k ← yk ∀k ∈ {1, . . . , N}

7: yk ←
∫ bk

bk−1
x f (x)dx/

∫ bk
bk−1

f (x)dx ∀k

8: ∆y← ∑N
k=1(yk − yprev

k )2

9: ∆rel. ← ∆y/ ∑N
k=1(y

prev
k )2

10: P(yk)←
∫ bk

bk−1
f (x)dx ∀k ∈ {1, . . . , N}

return {yk, P(yk)} ∀k

2) Multiple Linear Regression (MLR): forecasts assume
the demand/PV output over the horizon is some linear
combination of the previous D horizons of realized val-
ues5. The forecast is:

F = Xβ (8)

Where F ∈ R1×T is a row vector of point forecast values
for the next T intervals, X ∈ R1×TD is a row vector
of realized values for the previous TD intervals, and
β ∈ RTD×T is a matrix of parameters selected for a
particular customer using linear regression on a training
dataset. For the data considered in this paper D = 7
days provided reasonable performance for both PV and
demand forecasting (on an unseen validation dataset),
and was used in all results presented.

3) Perfect Foresight (PF): forecasts with zero error are
used to provide a non-tight upper bound on the perfor-
mance that could be achieved with better forecasts (i.e. the
performance of the approach under perfect information).

4) Forecast Errors: To produce scenario forecasts as
described in Section II-D2, it is necessary to have a prob-
ability density function of the demand and generation
in each interval within the horizon. To generate this, a
statistical model is assumed for the realized PV output
or demand over the horizon, Y , as:

Y = F + ε (9)

Where F is the output from a point forecast model,
and ε is a vector of random variables representing the

4yk could be initialized randomly. For the Normal distribution N
linearly spaced values over [µ− 2σ, µ + 2σ] offered faster convergence.

5In general MLR can include additional regressors such as forecast
temperature, dummy variables to encode day of the week, holidays,
etc. For simplicity the univariate case is considered.



Fig. 2. Forecast Error Distribution for MLR PV Forecasts for a Typical
Customer, for 4 of the 48× 48 Error Groups. Indicates that assuming
a Normal distribution for these errors is a reasonable approximation.
During the middle of the day (half-hour No. 24), PV forecast errors are
greater, and they are slightly reduced for nearer-term forecasting.

forecast errors in each step of the horizon. To improve
the resolution of scenario forecasts, errors ε are divided
into groups, and a Normal distribution is fitted to each
group. The forecast error groups are defined as follows:

For NP forecasts, forecast errors are divided into
groups based on the interval-of-the-day for which a fore-
cast is made (so for half-hour intervals we have 48 groups
of errors). Low (zero) forecast errors can be expected for
the PV output during the hours of darkness.

For MLR forecasts, forecast errors are further sub-
divided based on the number of intervals in advance the
forecast is made. Here nearer-term forecasts of PV and
demand might be expected to have lower forecast errors.

Once divided into their groups, a Normal distribution
is assumed for the forecast errors, ε. The standard devia-
tion for each group of errors is based on the performance
of the chosen forecast model on the training data6.

Fig. 2 gives a few typical forecast error histograms from
MLR forecasting of PV output (on the training data) and
the Normal distribution by which they are represented
when producing scenarios. These results indicate that
assuming a Normal distribution for forecast errors from
the point forecasting models is reasonable.

The overall process of producing MLR scenario fore-
casts for the SDP is shown schematically in Fig. 3.

III. CASE STUDY & RESULTS

Table I summarizes the features of the empirical simu-
lations used to assess the two approaches to addressing
forecast uncertainty. The results presented are in terms
of the cost-savings delivered to the residential customer,
compared to not having a battery available (i.e. immedi-
ately exporting any excess PV generation, and importing
to meet excess local demand). Two years of half-hourly

6For the MLR forecast this is expected to under-estimate forecast
errors, when the models are applied to unseen test data

Fig. 3. Producing MLR Scenario Forecasts. Xnew is a feature vector for
a forecast horizon not included in the training data.

TABLE I
BASELINE SIMULATION PARAMETERS

Parameter Symbol Value Units

Interval Length ∆t 0.5 hours
Horizon Length T 48 intervals

Import Price ct
0.4 (7AM-10PM)
0.2 (otherwise) $/kWh

Export Price rt 0.05 $/kWh
Battery Capacity B 2 kWh
(Dis)Charging
efficiency ηc, ηd 0.94 []

Maximum
charge current

Ich,max =
−bmin/(B∆t) 1.0 C

Maximum
discharge current

Id,max =
bmax/(B∆t) 2.0 C

demand and PV output are taken for 16 customers for
2011-2013 from the Ausgrid ’Solar Home Electricity Data’
[10]. Peak demands for the customers was between 4 and
9kW, and peak PV output between 1 and 2.5kW. The
first year is used for training the MLR forecast model,
and to fit the forecast error Normal distributions for the
MLR and NP models. The second year is used to simulate
the performance of the battery controlled using the SDP
method outlined above, provided with various forecasts.

Fig. 4 shows the standard deviation of PV and demand
forecast errors for an example customer, after an MLR
forecast model has been fitted to the training data. As
might be expected forecast errors are highest at the
times of day when demand and PV output are generally
greater, and there are some slightly reduced forecast
errors for near-term forecasting.

Fig. 5 shows the cost saved by a battery operated using
SDP provided with point (N = 1) versions of the NP,
MLR, and the PF forecasts, as the discount factor, β, is
varied. For the PF forecast results are as expected, reduc-



Fig. 4. Standard deviation of PV (Left) and Demand (Right) forecast
errors from MLR forecasting, divided into 48× 48 groups, based on half-
hour interval of the day (horizontal axis), and No. of intervals ahead
forecast is made (vertical axis), for a typical customer. There is a clear
pattern of increased forecast errors during times of high PV output
(8AM-5PM). There are also reduced forecast errors when forecasting
in the near-term (bottom of plot). Similar patterns can be seen in the
Demand forecast errors, but the benefits of forecasting in the near-term
last only an hour, as a result of the volatility of demand for a single
household.

ing β from unity causes a loss in performance, because
the forecasts have zero error. A similar pattern can be
seen for the MLR and NP forecasts, indicating that cost-
discounting is an ineffective approach to accounting for
forecast uncertainty in this application. This is believed
to be the result of two issues; firstly forecast errors are
only weakly correlated with the distance into the horizon
that forecasts are made for (as can be seen by the relative
uniformity of Fig. 4 along the vertical axis), reducing the
validity of the cost-discounting approach to dealing with
forecast errors. The second issue is that using a discount
factor β < 1 increases the relative importance of costs
associated with the first few intervals; and these intervals
have the least robustness to forecast errors from receding
horizon control. Receding horizon control provides an
opportunity for recourse of intervals further into the
horizon, making the costs of those intervals less sensitive
to forecast errors, whereas solving the optimization with
β < 1, in effect, assumes intervals further into a horizon
are more sensitive to forecast errors.

The performance improvement achieved by consider-
ing an increasing number of forecast scenarios is shown
in Fig. 6. For the MLR forecast increasing the number
of scenarios monotonically increases the average perfor-
mance, and with N = 7 scenarios the battery offers 8%
greater cost savings per year, on average. For the NP
forecast the pattern is less clear, and cases with an even
number of scenarios tend to offer reduced performance
on average. This is probably because when N is even the
expected case is not included as a scenario; for example
if we know the PV output during a particular interval
is Normally distributed with mean µ and standard de-
viation σ, the forecast values for N = 2 scenarios are
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Fig. 5. Value of 2kWh Battery Operated Using SDP with Various
Forecasting Methods, over a range of Discount Factors, β. Line shows
the value relative to the value achieved at a unity discount factor β = 1,
averaged over the 16 customers.
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Fig. 6. Value of 2kWh Battery Operated Using SDP with an Increasing
Number of Scenarios, using NP and MLR Forecasts, each shown relative
to performance of a point forecast of the same type. Line shows average
over 16 customers, whiskers show the min/max cases.

µ ± 0.798σ, so do not include the expected PV output,
µ. For N = 7 scenarios the NP forecast performs just 1%
better on average, with a significant spread between the
16 customers (with some achieving worse performance
than when using a NP point forecast).

Fig. 7 shows the annual battery cost saving based on a
1-year simulation, using 5 different forecasting methods
(and a unity discount factor). MLR point forecasting
offers a 35% increase, on average, in cost-savings over NP
point forecasting, and considering N=7 scenarios around
the MLR point forecasts offers a further 8% improvement.
If the SDP were given access to a perfect foresight forecast
it can perform substantially better again, but this is a non-
tight upper bound on performance as any real forecast
will have some non-zero error. The cost savings from
a 2kWh (usable capacity) battery, under the tariff as-



NP: Naive Periodic Forecast MLR: Multiple Linear Regression forecast
N: No. of Scenarios PF: Perfect Foresight forecast
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Fig. 7. Value of 2kWh Battery Operated Using SDP with Various
Forecasting Methods. Bars show the mean for 16 customers considered,
the whiskers show the min/max cases.

sumptions made, are 180-470$/year if MLR forecasts with
N = 7 scenarios are used. If the battery lasts 5-years this
corresponds to a lifetime cost-saving of 900-2,350$. At the
time of writing commercially available one-off residential
battery systems cost approximately 1,000$/kWh (nominal
capacity). Therefore some of the significant battery cost
reductions which have been forecast, need to be realized
before batteries are a cost-effective investment for most
Australian home-owners, unless value streams beyond
the two considered in the present work are exploited.

IV. CONCLUSION

Two approaches to accounting for forecast uncertainty
when using a receding horizon controller, with dy-
namic programming for optimizing decisions over a fore-
cast/control horizon, have been presented.

The first approach applies a discount factor across the
forecast/control horizon. A below unity discount factor
(β < 1.0), which reduces the relative importance of costs
further into the horizon, might be expected to improve
performance, as those parts of the horizon are less certain
due to forecasting errors. However, this was not found to
be the case, and this is primarily the result of receding
horizon control providing increasing opportunities for
recourse further into the horizon, making costs associated
with events further into the horizon, counter-intuitively,
less sensitive to forecast errors.

The second approach converts point-forecast models
into probabilistic (scenario) forecast models based on
Lloyd-Max quantization of the point forecast error dis-
tributions; and uses these forecasts to optimize control
actions via stochastic dynamic programming. This ap-
proach increased the annual cost-savings of a 2kWh bat-

tery by 8%, on average, compared to a similar approach
which considered point forecasts only.
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