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Abstract—Favourable conditions in recent years have led to
significant uptake of residential rooftop solar photovoltaic genera-
tion in many parts of the world. However, the cost-effectiveness of
such systems is reducing due to declining subsidies, falling feed-in
tariffs, and the typical timing mismatch between solar generation
and local demand. In this paper, we investigate how this mismatch
can be addressed by installing a customer-end storage system
that provides an opportunity to maximally exploit the value of
existing solar generation. The value of such storage depends on
the extent of the coincidence of demand and generation, the size
of the storage system, the pricing structure for both energy used
and energy generated, any available feed-in tariffs, and the cost of
the storage itself. An optimal storage operational strategy using
dynamic programming is introduced and a variety of storage
system sizes and price scenarios are evaluated and compared. Our
study shows that under certain conditions customer-end storage
could become economically attractive to consumers in the near
future, opening the door for disruptive retail electricity business
models in the years to come.

I. INTRODUCTION

In recent years, many regions of the world have seen a sig-
nificant uptake of rooftop photovoltaic (PV) solar generation in
residential areas. Australia is a prime example: the favourable
combination of high levels of insolation, rising electricity
prices, and attractive feed-in tariffs has led to installation
of more than a million residential PV systems – an uptake
equivalent to 14% of households, and one of the highest rates
in the world [1].

The economic value of residential PV is determined by
the initial system cost, the cost structure of importing energy
from the grid, the payment structure of exporting energy to the
grid, and the coincidence of demand and generation. Domestic
households typically have periods of high power demand in the
morning and evening, with less power demand during the day.
PV generation, however, tends to generate the majority of its
energy in the middle of the day. This means that houses with
PV systems frequently end up exporting energy to the grid in
return for a payment in the middle of the day, and purchasing
energy at standard electricity rates in the morning and evening.

Until recently, exporting energy to the grid has been en-
couraged in many parts of the world by feed-in-tariffs that have
typically been greater than the electricity rate. This allowed
consumers having low demand during the day to benefit from
feeding generated energy into the grid and purchasing required
energy back in the evening, at a net benefit. Recently how-
ever, feed-in tariffs in many locations have been significantly

Fig. 1: Trends in retail electricity price and renewable energy
feed-in tariff, Victoria, Australia

reduced, often to rates lower than the electricity price. For
example, in the period from 2009 to 2014, feed-in tariffs in
the state of Victoria, Australia were reduced by 87% while
retail electricity costs rose by 73% [2], [3]. These trends are
shown in Fig. 1.

When the credits for generating electricity are smaller than
the cost of buying electricity, there is no longer an incentive
to feed back into the grid; rather, the greatest net benefit can
be derived from using as much of the locally generated energy
to satisfy local demand as possible. A simple way to do this
is to perform demand response, i.e. to schedule time-shiftable
loads (washing machines, dishwashers, etc.) to times of day
when generation is likely. A more refined way to achieve this
would be to monitor relevant local conditions in real or near-
real time, and to intelligently schedule loads dynamically in
response to available generation.

Either of these approaches can be well supported with the
integration and intelligent control of customer-side energy stor-
age. Until recently, high battery prices and minimal incentives
for load-shifting meant that customer-side energy storage was
neither economical, nor widely available. However, battery
costs are falling: the costs of compact lithium-ion battery
packs, for example, are estimated to have reduced by 25%
between 2009 and 2014, and are expected to fall further [4].
At the same time, rising electricity prices and falling feed-in
tariffs are strengthening the incentive for local load shifting.

Given all of these trends in the industry, the following
question naturally arises: is there a value case for residential
storage in combination with an existing PV generation system?



Towards this objective, in this paper we first explore the typical
coincidence between solar generation and household demand.
We then present an approach for optimal operation of battery
storage, which is used to investigate the electricity cost savings
for different storage system sizes. We finally evaluate the
payback of storage systems under a variety of cost and sizing
assumptions. We answer the above question in the affirmative
and show that in the coming years there will likely be a
significant value proposition for introducing residential storage
in combination with existing PV generation systems.

II. COINCIDENCE ANALYSIS

Residential demand and PV generation profiles vary signif-
icantly from one house to another and from one month to the
next. Fig. 2 presents typical demand and generation profiles
for a suburban household in Melbourne, Australia for a day
in summer. The generation profile represents a 2.5kW system
(most popular residential size) generating on a cloudless day,
and the demand profile represents average load as measured
at a distribution transformer having 114 residences connected.
As can be seen, excess generation (diagonally shaded between
9:00 - 16:00) could be stored in a battery, and used to offset
excess demand at a later time of day (diagonally shaded
between 16:00 - 20:00). In the summer, such a relatively small
PV system could almost cover peak demand. In the winter
(when demand is higher due to heating, and there is reduced
generation) this offset decreases.

An important point to note is that Fig. 2 presents smoothed
profiles that are averaged over large numbers of customers. In
reality, with instantaneous switching of loads and intermittent
cloud cover, the coincidence is quite different. Fig. 3 shows
data measured at one specific household on a summer day
over fourteen hours – the impacts of a thermostat controlled
air conditioner on demand, along with the impacts of variable
cloud cover on generation can clearly be seen. Given that
electricity prices are typically calculated according to net grid
import / export over discrete time intervals, the coincidence
across these intervals becomes important. In Victoria, where
mandatory smart meter installation has taken place, these
intervals can be as small as five minutes.

This study uses the following datasets:

Demand: to model residential demand, we use 88 individual
user profiles, logged at customers’ smart meters in half-hour
intervals over the course of a full year (June 2012 - May 2013).
The average daily demand is presented in Fig. 4.

Generation: to model generation, we use data logged at a
residential PV installation. This dataset was only available
from January 2014-August 2014, and for the remaining months
data from similar months (according to standard insolation
levels) was replicated to fill the gap. This generation profile
is presented in Fig. 5. As can be seen, the measured data set
matches standard annual insolation values for Melbourne well.

To examine the coincidence in our datasets, an interval-
by-interval comparison (in 30min intervals) of all 88 demand
datasets to the generation profile was conducted. The results
are also shown in Fig. 5. Areas shaded in red represent
generation that occurs in excess of present demand (in other
words, generation that is fed back into the grid). Areas shaded

Fig. 2: Coincidence of averaged demand and generation for
a household in Victoria, Australia. Excess generation can be
stored and used to offset later demand.
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Fig. 3: Coincidence of specific demand and generation for a
household in Victoria, Australia. In reality, high variability in
both generation and demand must be taken into account when
determining coincidence.
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Fig. 4: Average daily demand, as averaged over 88 individual
consumer datasets measured at 30-minute intervals.
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Fig. 5: Average daily generation for a 2.5kW PV system, with
coincidence averaged over 88 customers. 78% of local gener-
ation does not coincide with local demand when comparing
across 30-minute intervals.

Algorithm 1 Calculating the smallest storage system size S
that will capture all local generation across time period T,
where g(t) and d(t) are generation and demand at time t,
respectively.

cSum(0) = 0
for t = 1 to T do

cSum(t) = max(0, cSum(t-1) + g(t)−d(t)
∆t )

end for
S(T) = max(cSum)



in blue represent generation that is used to offset local demand
directly. As can be seen, the mismatch between generation and
demand is significant: across the full year, 78% of generated
energy is fed back into the grid, with only 22% being used to
offset local demand.

The highly intermittent nature of both demand and genera-
tion (as shown in Fig. 3) means that a storage system may
alternate between charging and discharging at many points
throughout the day. On the one hand the additional cycling
leads to faster battery degradation, but on the other hand,
typically a smaller system size is required to fully capture all
available generation than is often thought. It is straightforward
to calculate this smallest required storage system size: it is
simply the maximum of the cumulative sum of coincidence
across all intervals in the time period of interest (see Algorithm
1). For the profiles shown in Fig. 2, a battery of size 5.0kWh
would be sufficient to ensure that all generation is used (and
none is exported to the grid); for the profiles shown in Fig. 3
a battery of size 3.3kWh would be sufficient.

III. OPTIMAL STORAGE OPERATION

To understand what the impact of storage might be for
residential customers, and to draw some conclusions regarding
the financial viability, it is necessary to understand the storage
system’s operation – in other words, its charge/discharge strat-
egy. Storage operation has already been extensively discussed
and trialled in several studies around the world. Most studies
to date have focussed on large scale storage as operated by the
network operator, for example for peak load shifting or voltage
control [5], [6]. Only recently has there been more interest in
the possible operation of storage systems on the customer side
[7], [8]. For the analysis conducted in this paper we use a
simple method based on dynamic programming.

For convenience of notation, let the time-varying net impact
on the electricity grid of a customer be represented by n(t).
This net impact is simply the sum of demand, generation, and
storage charge / discharge: n(t) = d(t) − g(t) − b(t). (Note
that battery discharge is modelled as a positive quantity, with
battery charging negative). The cost paid at any time t by the
consumer depends on the electricity pricing structure c−(t)
that is paid when demand exceeds generation, and the feed-in
tariff c+(t) that is received when generation exceeds demand:

c(t) =

n(t) c−(t) if n(t) ≥ 0

n(t) c+(t) if n(t) < 0

The full cost over a horizon T is therefore:
∑T

t=0 c(t)∆t.

Our goal is to minimise the total cost of electricity use.
The lowest possible cost over the horizon (along with the
associated charge/discharge strategy for the battery) can be
determined using dynamic programming. This is achieved by
discretising all possible levels of charge of the storage system
into S intervals, and all points in time in the horizon of interest
into T intervals, a state space of S × T .

The dynamic program is operated with a forward pass and
a backward pass. In the forward pass, for every time t ∈ T
the best possible way of reaching all states of charge s ∈ S
is determined. Upon reaching the final time interval, the best
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Fig. 6: Optimal storage operation for a 5kWh system size, as
applied to the demand and generation profiles in Fig. 2.

final state is chosen and a backwards pass ensures that the
optimal operational strategy that led to this best final state is
recovered.

This method relies on predicting demand and generation in
future intervals. For the analysis conducted in this paper, we
used the available datasets (in other words, perfect prediction),
so the results present an upper limit on the possible benefits
of storage. In reality, such prediction is difficult and the likely
benefit would be lower. However, we do not expect it to be
significantly lower since there is a certain amount of flexibility
in when a battery can charge and discharge, and since updated
predictions could be established in a receding horizon manner
on a real system.

Fig. 6 shows how this optimal storage operation is applied
to the demand and generation profiles shown earlier in Fig. 2.
Peak pricing in this case applies to the time period from 7:00 to
23:00 as marked by the dashed red lines. In the lead up to the
changeover from off-peak pricing to peak pricing, the battery
charges in order to shift load from peak to off-peak. However,
it only charges as much as is required to offset demand before
the PV system starts to generate (since it is desirable to use as
much of the storage system’s capacity to store generation as
possible). As soon as generation exceeds demand, the storage
system charges. Once demand exceeds generation, the storage
system discharges – using as much excess generation to offset
peak demand as possible.

IV. STORAGE BENEFIT ANALYSIS

In this section we examine the electricity cost savings that
a customer can expect to receive for a variety of storage system
sizes. While there may also be a case for lead-acid batteries
(as well as other chemistries) for customer side storage, we
examine here only Li-ion batteries. This is partly due to their
high cycle life, projected cost decreases, and high energy
density [4], and partly due to projected availability of large
numbers of used Li-ion electric vehicle batteries in the near
future that may be of value in second-life applications [9].

The same datasets described in Section III are used to
model demand and generation, and the remaining assumptions
used to generate the following results are based on typical
conditions in Victoria, Australia, and are presented in Table I.
An optimal charge / discharge strategy as described in Section
III is assumed.

Fig. 7 shows the savings that a 5kWh storage system can
provide over the course of a year. After 1 year of operation,
$307 of savings are available for the customer. The operation
of the same storage system over 20 years is presented in Fig.
8 (assuming an electricity price fixed at June 2014 levels).



PV
generation

The generation dataset corresponds to output from a
2.5kW system. Degradation of the PV system is modelled
as 0.5%/year.

Battery Only 80% of nominal maximum capacity is utilised as
to protect against excessive battery degradation [10]. The
charging and discharging rates are limited to a maximum
of 3.45kW. Regarding degradation, maximum capacity
reduces at a rate of 20% capacity for every 1500 charge-
discharge cycles of nominal maximum capacity [10]. Par-
tial cycling is assumed to cause degradation proportional
to cycling depth.

Electricity
cost

For the first year of generation we assume on- and
off-peak prices of 36¢/kWh (7am-11pm) and 22¢/kWh
(11pm-7am), respectively. For subsequent years, electric-
ity price follows the respective trends shown in Fig. 1.
The low forecast assumes prices remain at June 2014
levels; the medium forecast assumes prices grow at the
fitted average slope over the past two years; and the high
forecast assumes prices grow at the fitted average slope
over the past five years.

Feed-in
tariff

A feed-in tariff of 8¢/kWh is assumed for 2014, reducing
to 6.2¢/kWh from 2015 onwards [11].

Storage
cost

Studies assume storage costs of either $600, $310, or
$150 per kilowatt-hour, corresponding to estimated costs
in 2014, 2020 and 2030, respectively [4]. Furthermore, a
size-independent fixed cost of $1500 is assumed to cover
inverter and installation. No ongoing maintenance costs
were considered.

Interest,
inflation

No interest rates are considered in this work. All dollar
values are in 2014 terms.

TABLE I: Assumptions

At the end of this period, $4323 would have accumulated
for the customer (and for an increasing electricity price this
would be greater). Over the lifetime of the storage system, its
useable capacity decreases in response to the increased number
of cycles it undergoes (Fig. 9). In this case, the storage system
would have undergone a total of 4356 cycles, leading to a
useable capacity of only 1.1kWh after 20 years.

Finally, a range of different storage sizes are compared in
Fig. 10. As can be expected, larger systems provide greater
returns. However, in proportion to battery capacity, smaller
systems generate more savings than larger systems due to
a higher utilisation. This utilisation also results in increased
battery degradation, which leads to the notable reductions in
annual cost savings in later years for smaller systems.

V. PAYBACK ANALYSIS

In this section, we conduct an analysis of the payback pe-
riod of batteries. The payback period can be determined from
the results of the prior benefit analysis and the assumptions
listed in Table I.

Fig. 11 shows the average impact of future electricity price
trends on battery system payback period for various battery
sizes at 2020 estimated prices ($310). Regardless of which
electricity cost trend is considered, the 6kWh system is found
to have the shortest payback period. Smaller and larger systems
have higher payback periods due to the size-independent cost
component for smaller systems, and the limited utilisation for
larger systems for the 2.5kW PV generation considered.

If electricity prices remain flat at 2014 levels (low forecast),
on average over the 88 house demand sets evaluated, the cost
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Fig. 7: Electricity cost savings for a 5kWh storage system over
one year
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Fig. 8: Electricity cost savings for a 5kWh storage system over
20 years
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Fig. 9: Modelled battery degradation of a 5kWh storage system
over 20 years
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Fig. 10: Comparing the benefits for different sizes of storage
systems

of an 8kWh system is recouped in 11.4 years. If prices rise
as steeply as they have these past 5 years (high forecast),
the system pays itself back in 8.2 years on average. And if
prices rise albeit more slowly as they have the past two years
(medium forecast), then the system will take around 9.0 years
to pay itself back.

The impact of battery prices on payback period assuming
a continuation of the electricity price trend of the past 5 years
(high forecast) is shown in Fig. 12. A lower battery cost has
an obvious impact on payback period, with the payback period
of 5kWh system reducing from 11.6 years at current battery
prices to 8.2 years and 6.2 years for battery costs forecasted
for 2020 and 2030, respectively.

The results also indicate that for lower battery prices,
the optimal system size increases. While for current battery
cost estimates a 5kWh system offers the shortest payback
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Fig. 11: Comparing the payback time for a battery cost of
$310/kWh and three different electricity price forecasts.
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Fig. 12: Comparing the payback time for the high electricity
price forecast and three different battery costs
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Fig. 13: Payback period histogram of 88 houses for 6kWh
system, high electricity forecast and battery cost of $310/kWh.

period, for 2020 and 2030 battery costs, the optimal system
sizes are 6kWh and 7kWh, respectively. This suggests that
with passing time, there is incentive for consumer to buy
increasingly large battery systems. This may be of concern for
power companies as increasing battery sizes allow consumers
to bridge increasing time delays in generation and inch ever
closer to being self-sufficient from an energy perspective. Note
that this consider only the battery price to be at future levels,
not the electricity price. If by the time the system is first
installed the initial electricity cost is already at a higher level
than presently, the payback period reduces further yet.

In addition to the average payback results for 88 houses,
payback distributions among these houses were also inves-
tigated. Fig. 13 shows the payback period histogram for a
6kWh storage system, the high electricity price forecast and the
estimated 2020 battery cost. Out of the 88 houses simulated, 83
houses have a payback period of less than 10 years, and all but
one recover the initial costs in less than 20 years. This tight
clustering of payback periods suggests that once customer-
side storage starts becoming financially viable for the first few
households, viability for the large majority of houses may not
lag far behind.

VI. CONCLUSION

There has been a surge in residential rooftop solar instal-
lations in recent years. However, waning subsidies, reducing
feed-in tariffs, and timing mismatch between solar generation
and local demand are raising questions about the cost-efficacy
of these systems. Li-ion batteries are emerging as promising
candidates for residential energy storage units owing to rapidly
declining costs. Motivated by this trend, we (1) investigated
the coincidence between solar generation and local demand
(using real smart meter data sets from 88 households), and
examined how it can be effectively managed by means of
local storage, (2) proposed a dynamic programming based
optimal charge/discharge policy for storage operation, and (3)
conducted a cost analysis to evaluate possible dollar-savings
in electricity as a result of introducing residential storage,
and what the return on this storage investment would be. Our
results indicate that there is significant potential for integrating
local battery storage with existing residential PV generation
systems. This proposition is likely to become financially viable
with attractive payback periods in the near future.
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