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Abstract— Most existing demand response or management
algorithms require a dedicated communication infrastructure
to coordinate actions of electricity users. However, the necessary
communication infrastructures may not be available in many
low-voltage (LV) networks around the world. On the other
hand, implicit information on the state of the network is readily
available at all times via measurements. In this paper we
propose a stochastic modelling approach to estimate aggregate
network demand from local voltage measurements at each
household using a gamma distribution. The model suggests
a linear relationship between the expected value of network
demand and voltages at households in the network. We propose
a set of illustrative distributed demand control algorithms
that allow making decisions based on local information only.
Depending on the nature of different appliances, the algorithms
either shift the entire demand block to another time (for
deferable loads such as driers) or alter the consumption rate of
an appliance continuously (for granular loads such as electric
vehicles). We illustrate via simulations that the stochastic model
captures the actual relationship between voltage and demand.
The resulting demand management algorithms are efficient in
reducing demand peaks without reducing the overall consump-
tion. Moreover, the lack of explicit communication requirements
makes the algorithms scalable and readily applicable to most
LV networks.

I. INTRODUCTION

Electricity consumption has a time varying nature. Typi-
cally, the difference between peak and off-peak electricity
consumption is significant. Such differences are currently
compensated through control of generators. As a conse-
quence, during peak hours, generators are able to charge
scarcity prices that are significantly higher than the average
price which also drives up the retail price. In Victoria,
Australia, 2014, the highest wholesale price which occurred
on one of the summer days was 70 times more than the
average price and the highest 5-minute dispatch price is as
high as 300 times the average [1]. In addition, the expensive
grid infrastructure, which is designed to withstand peak
demand, is heavily under-utilized for off-peak hours. In
Victoria, Australia, 2012, more than 25% of the grid is only
used for less than 2% of the time in the year [2]. That is
billion-dollar worth of infrastructure sitting idle for almost
all the time, and it is getting worse over time [2].

Demand management or demand response is proposed
as an efficient way to control electricity demand, flatten
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overall consumption, reduce whole sale electricity price
volatility and improve grid asset utilization. Some imple-
mented algorithms such as direct load control (DLC) and
time-of-use tariff (TOU) have obvious drawbacks. DLC cuts
off user consumption in need without accounting for the
comfort of consumers and TOU does not reflect the real
demand dynamics of the grid [3]. Recently, some algorithms
using dynamic pricing (or a price-alike signal) or centralized
control have been proposed to manage energy consumption
at the demand side [4]–[9]. One feature the algorithms
share in common is that a dedicated single directional or
bi-directional communication channel needs to be present
for the algorithms to work. However, such infrastructure
does not commonly exist which makes the algorithms not
readily applicable. More recently, some control algorithms
that make decisions based only on local measurements have
been proposed [10], [11]. However, the conclusions are rather
heuristic and the underlying principles of using household
voltages as network demand indicators are not analysed
in detail. In this paper, we model the stochastic nature of
LV networks, in particular the last mile, and then develop
demand management algorithms based on it.

Stochastic analysis is a popular tool in demand forecasting,
demand modelling for the purpose of LV network design
[12]–[14]. A beta distribution model is proposed in [12] to
estimate household load profiles such that the peak demand
can be estimated and transformers can be sized accordingly.
Such approach has been adopted in the electricity network
design in South Africa [12]. Later, a gamma distribution
model is shown to be more accurate in terms of capturing
household half-hourly demand patterns via Monte Carlo
simulations [13]. The authors have also shown that param-
eters of probability density functions can be extracted from
known data-set and the model is calibrated against varying
temperature. Such stochastic modelling can be implemented
on a finer level where load profiles of different appliances
within a household are modelled as different random vari-
ables [14]. Instead of a single random variable, the demand
profile of a household is now a combination of several
random variables. The results have also been shown to well
match the actual demand profiles. In this paper, we use
a simple gamma distribution to model household demand
patterns and the parameters for the distribution are extracted
from actual meter data. With this probability distribution of
demand profiles, using classic circuit theory, we correlated
demand and voltages in a distribution network such that the
probability distribution of household voltages under a given
network demand can also be derived. Using that information,



the power-line itself could then act as a communication
channel and household voltage measurements can be used
as a signal for demand management coordination.

The main contributions of this paper are the following:

• We analyse the stochastic nature of electricity demand
of households at any time instance and propose a
gamma distribution based model to correlate network
demand and household voltages.

• Using the stochastic model, we develop two distributed
control algorithms for demand management based on
household voltage measurements. The algorithms are
tailored to suit the physical energy consumption require-
ments of different appliance categories.

• The model and algorithms are verified via detailed
modelling of a real Australian suburban network under
normal operating condition.

The rest of the paper is organized as follows. Section II
introduces the network modelling as well as the stochastic
approach for network demand estimation using household
voltages. Section III proposes two illustrative algorithms for
demand management based on the stochastic model. Section
IV verifies the performances of the proposed models and
algorithms based on simulations. The work is concluded in
Section V and some possible future work is proposed.

II. VOLTAGE-DEMAND RELATIONSHIP MODELLING

A. Single branch network

The focus of the paper is on the last mile of three-
phase radial networks where each house is connected to a
single phase. Almost all Australian networks are of such
configuration. Different from a transmission network, in a
typical last mile residential distribution network, loads are
predominately active power loads and therefore the power
factors are usually very high. Hence, we start the analysis
by assuming a balanced network with unity power factor.
Such assumptions will be violated in Section IV to test the
tolerance of proposed model. We start by looking at networks
having only one branch and then extend the observation
to branched networks. Figure 1 shows the schematic of
one of three phases. There are in total n houses connected
on this phase. Households are modelled as current loads
where Ix, x = 1, 2, ..., n depicts the demand of house x
in terms of current. The total demand in the network is
also defined in terms of current, Is, and the voltage at the
source side, Vs, is assumed to be constant. We proceed by
making the assumption that the line impedances between
any two adjacent houses are the same denoted by ZL,
which will be true for many residential networks where
all properties have roughly the same sizes. For unbalanced
networks, the formulation will be slightly different but the
fundamentals remain. Using circuit theory, the relationship
between voltages and demand is expressed as (1).
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Fig. 1. System diagram for a single branch network
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Fig. 2. Distribution of households demand for a distribution network at a
time instance fitted by a gamma distribution
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As being implicitly assumed in [11], if the demand of
each household is identical to the others at any time. i.e.
Ix = Is/n, x = 1, 2, ..., n. Equation set (1) can be quickly
reduced. The total demand in the network and local voltage
measurements are correlated via the following equations for
household x, x = 1, 2, ..., n.

Vx = Vs − ZL(n
Is
n

+ (n− 1)
Is
n

+ · · ·+ (n− x+ 1)
Is
n

)

= Vs − ZL
Is
n

(2n− x+ 1)x

2
(2)

From (2), for any household x in the network, the rela-
tionship between the local voltage Vx and total current in
the network Is is linear. However, the assumption does not
hold as the demands of individual households will rarely



be identical. To understand what the demand is like, we
have collected and plotted the real household demand in
terms of current (normalized with respect to the average
demand) at any time instance in the year 2013 for a network
located in Melbourne, Australia. The histogram of household
currents at a random time instance is shown in Figure 2.
The distribution has a tall head and a long tail which can
be fitted by a gamma probability density function (shown
as a continuous curve in Figure 2). Therefore, we assume
that the demand of houses be mutually independent variables
(Ax, x = 1, 2, ..., n) which satisfy a gamma distribution that
is described as follows:

Ax ∼ Γ(k, θ) (3)

E[Ax] = kθ :=
Is
n

(4)

V ar[Ax] = kθ2 := θ
Is
n

(5)

where the shape parameter k and the scale parameter θ
describes the distribution which can be obtained by fitting
the histogram of actual demand data. The mean of the
distribution is E[Ax] and the variance is V ar[Ax]. Note that
the distribution is time varying and Is is also time varying.
The notations in this paper capture the behaviour of the
network at a time instance. We found that at a different time
in a day or in a year, the value of k changes according to the
total demand Is but the value of θ could stay unchanged. In
other word, gamma functions can be fitted such that for any
time instance, θ is a constant. Now let Ux be the random
voltage at house x at a time instance, (1) can be rewritten
as follows for user x, x = 1, 2, ..., n:

Ux = Vs − ZLBx (6)
Bx = x(Ax +Ax+1 + · · ·+An)

+ (x− 1)Ax−1 + · · ·+ 2A2 +A1 (7)

Note that the distribution of random variable Bx, which
is a linear combination of independent gamma variables,
is still an open research question. However, a widely used
method, the Welch-Satterthwaite method [15], approximates
Bx using a gamma random variable B̂x ∼ Γ(kB̂x

, θB̂x
) for

x = 1, 2, ..., n that can be written as follows:

E[B̂x] = kθ
(2n− x+ 1)x

2
(8)

V ar[B̂x] = kθ2−4x3 + 6nx2 + 3x2 + x

6
(9)

kB̂x
= E2[B̂x]/V ar[B̂x] (10)

θB̂x
= V ar[B̂x]/[B̂x] (11)

B. Multiple-branch network

We now extend the findings to branched networks with
multiple feeders. Figure 3 shows one phase of a network
with m branches. The problem can be solved in two stages.
Firstly, assuming that each branch is a single load, the
problem will be transformed into a single branch problem
as in the previous subsection where loads have different
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Fig. 3. System diagram for a multiple branch network

characteristics. Assume that the number of houses on branch
1, 2, ...,m is n1, n2, ..., nm, using (3) for the household
demand, the aggregated demand on each branch is a gamma
random variable My ∼ Γ(ky, θ), y = 1, 2, ...,m which can
be described as follows:

ky = nyk (12)
E[My] = nykθ (13)

V ar[My] = nykθ
2 (14)

Now let U0
y be the random voltage at the first node of branch

y, y = 1, 2, ...,m. Apply (6) and (7) here, we have:

U0
y = Vs − ZLB

0
y

B0
y = y(My +My+1 + · · ·+Mm)

+ (y − 1)My−1 + · · ·+ 2M2 +M1 (15)

Again, B0
y is a linear combination of random gamma vari-

ables which can be approximated using a gamma distributed
random variable B̂0

y . The parameters of B̂0
y ∼ Γ(kB̂0

y
, θB̂0

y
)

for y = 1, 2, ...,m are given as follows:

E[B̂0
y ] = kθ(y(ny + ny+1 + · · ·+ nm)

+ (y − 1)ny−1 + · · ·+ 2n2 + n1)

V ar[B̂0
y ] = kθ2(y2(ny + ny+1 + · · ·+ nm)

+ (y − 1)2ny−1 + · · ·+ 4n2 + n1)

kB̂0
y

= E2[B̂0
y ]/V ar[B̂0

y ]

θB̂0
y

= V ar[B̂0
y ]/E[B̂0

y ]

Secondly, if the voltage at the first node of each branch (V 0
1 ,

V 0
2 ,...,V 0

m) is constant, the problem on each branch will be
identical to the single branch scenario. However, since the
voltage at the first node of each branch is now a random
variable itself (U0

1 , U0
2 ,...,U0

m), the problem will be changed



slightly. We can write the following for house x on branch
y:

Ux
y = U0

y − ZLB
x
y = Vs − ZLB

0
y − ZLB

x
y (16)

Bx
y can be approximated by a gamma random variable B̂x

y

described as follows:

E[B̂x
y ] = kθ

(2ny − x+ 1)x

2

V ar[B̂x
y ] = kθ2−4x3 + 6nyx

2 + 3x2 + x

6

Define the voltage drop at house x on branch y as ∆Ux
y =

Vs − Ux
y = ZLB

0
y + ZLB

x
y . It can be approximated as

∆Ûx
y = ZLB̂

0
y + ZLB̂

x
y , then ∆Ûx

y ∼ Γ(k∆Ûx
y
, θ∆Ûx

y
) can

be described by the following parameters:

E[∆Ûx
y ] = kZLθ(

(2ny − x+ 1)x

2
+ y(ny + · · ·+ nm)

+ (y − 1)ny−1 + · · ·+ 2n2 + n1) (17)

V ar[∆Ûx
y ] = kZ2

Lθ
2(
−4x3 + 6nyx

2 + 3x2 + x

6
+ y2(ny + ny+1 + · · ·+ nm)

+ (y − 1)2ny−1 + · · ·+ 4n2 + n1) (18)

k∆Ûx
y

= E2[∆Ûx
y ]/V ar[∆Ûx

y ]

θ∆Ûx
y

= V ar[∆Ûx
y ]/[∆Ûx

y ]

Then, using (4) and (5), we can simplify (17) and (18) as:

E[∆Ûx
y ] = Kx

yZLIs (19)

V ar[∆Ûx
y ] = θW x

y Z
2
LIs (20)

where Kx
y and W x

y are house specific constants depending
purely on the topology of network and household location.
Kx

y and W x
y can be written as follows:

Kx
y =

1

n
(
(2ny − x+ 1)x

2
+ y(ny + n2 + · · ·+ nm)

+ (y − 1)ny−1 + · · ·+ 2n2 + n1) (21)

W x
y =

1

n
(
−4x3 + 6nyx

2 + 3x2 + x

6
+ y2(ny + ny+1 + · · ·+ nm) (22)

+ (y − 1)2ny−1 + · · ·+ 4n2 + n1)

Therefore, we have obtained a linear expression as in (19) to
relate the expected values of individual household voltages
and total network demand. Note that the parameters of
the linear expressions are specific to individual households.
Therefore, no houses are intentionally advantaged or dis-
advantaged under such a paradigm. The variance of such
an approximation is also linear to the total demand as
shown in (20) . Most distributed demand response algorithms
require the total network demand to be broadcast either
in its direct form or in the form of a dynamic price via
a dedicated communication channel. The above analysis
shows that the power line itself can be such communication
channel: household voltages can be used as the dynamic
price signals to coordinate demand management of various
users. To further justify the model under actual operating
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Fig. 4. Relationship between network total current and local voltage of a
house in the network

conditions, we collect and plot the network total current
versus individual households’ voltages for a real Victorian
suburban network. Figure 4 shows the plot of a randomly
selected household over a 24 hour period sampled every 15
minutes. Each dot on the plot indicates the local voltage at
that house and the corresponding network total current at a
sample time. The scatter plot is well fitted with a straight
line and the approximation errors increases as total current
increases, which justifies our theoretic model. Such errors
can then be compensated through well designed controllers
using feedback.

III. DISTRIBUTED DEMAND MANAGEMENT ALGORITHM
EXAMPLES

The main goal of demand management algorithms is to
move the peak demand to off-peak periods such that the
overall power consumption pattern is flattened. By doing
so, the grid infrastructure is better utilised and wholesale
electricity price volatility is avoided. In addition, a flat
consumption pattern leads to a more stable voltage profile
which improves power quality in a distribution network.

In order to illustrate our voltage-demand model, we
propose two illustrative example algorithms for demand
management without any explicit communication require-
ments. If the network topology and household locations are
known to each house, a linear controller can be developed
for demand management. However, usually the topology is
not known to individuals. Therefore, we propose a linear-
increase-linear-decrease style controller for each household
to iteratively reach its demand management goal.

Depending on load types, the controller will be slightly
different. We first of all categorize the loads into two
categories:
1) Storable demand loads: The first category of loads in-
cludes those appliances that are relatively robust to varia-
tions in power input. Some typical examples include air-
conditioning (AC) units, space heaters, electrical water
heaters and electric vehicles (EVs). For AC units and fridges,
the objective is to keep interior temperature within a desired



range. Therefore, an interruption for several minutes fol-
lowed by a higher cooling output or vice versa can still sus-
tain desired temperature and provide scheduling flexibility.
For EVs and water heaters, the flexibility is even higher. Such
appliances can be interrupted for hours without affecting the
quality of service.
2) Shiftable demand loads: The second category of loads
includes those whose demand can be shifted but not easily in-
terrupted. Examples of such loads include washing machines,
driers and dish washers. These appliances can be delayed
until there is increased capacity in the network before they
are turned on. However, once these appliances are turned on,
they should not be interrupted until their duty cycles finish.

Algorithms 1 and 2 are proposed for storable loads and
shiftable loads respectively. Algorithm 1 is a rate-based
controller which controls the current flowing into an appli-
ance. Current increases or decreases linearly according to the
voltage measurements. Algorithm 2 is a probability-based
controller that controls the probability for an appliance to
be switched on or off. Once switched on, the appliance will
complete its full duty cycle without interruption.

Algorithm 1 Storable loads management
Input: V (t), V min, V max, τ
Output: I(t)

1: I(0)← 0, t← 1 . initialization
2: I(t)← I(t−1)+Irated ∗(V (t)−Vmin)/(Vmax−Vmin)
3: I(t)← min{I(t),Irated}
4: I(t)← max{I(t),0}
5: wait for (τ ), t← t+ 1
6: goto (step 2)

Algorithm 2 Shiftable loads management
Input: V (t), V min, V max, τ
Output: I(t)

1: I(0)← 0, t← 1 . initialization
2: p(t)← p(t− 1) + (V (t)− Vmin)/(Vmax − Vmin)
3: p(t)← min{p(t),1}
4: p(t)← max{p(t),0}
5: if rand(0,1)<p(t) then
6: I(t) = Irated
7: run full duty cycle
8: end
9: else

10: I(t) = 0
11: wait for (τ ), t← t+ 1
12: goto (step 2)
13: end if

In the algorithms, Irated represents the current rating of
the appliance, V (t) denotes household voltage at time t,
I(t) denotes the current consumption at time t and p(t)
(if applicable) denotes the probability of having I(t); Vmin,
Vmax are minimum and maximum threshold voltages of a
household which can be obtained from historical measure-

ments. The interval length τ between iterations should be
carefully chosen for the algorithm to obtain desired outcome.
Statistically, the two control algorithms will have the same
control result. Let the demand expected value or expectation
of a household at time t be

Et[I] = Et−1[I] +

∞∑
i=1

∆Ii(t) ∗ pi(t) (23)

where ∆Ii(t) is a possible increment in current that an
appliance could take and pi(t) is the probability for ∆Ii(t)
to be taken. Assume that one appliance of each kind is about
to make a demand decision at time t under exactly the same
grid condition.

For storable loads, using Algorithm 1, we have the fol-
lowing

pi(t) =

{
1, if ∆Ii(t) = Imax ∗ V (t)−Vmin

Vmax−Vmin

0, otherwise

For storable loads, using Algorithm 2, we have the following

pi(t) =

{
V (t)−Vmin

Vmax−Vmin
, if ∆Ii(t) = Imax

0, otherwise

For the two cases, using (23), the expected values of demand
for time t are identical as shown in the following equation. In
other words, even though the two controllers act differently,
they would essentially yield the same outcome statistically.

Et[I] = Et−1[I] + Imax ∗
V (t)− Vmin

Vmax − Vmin
(24)

IV. SIMULATIONS

To illustrate the performance of the illustrative algorithms
under real operating conditions, we use a model of a Victo-
ria suburban three-phase residential distribution network in
Simulink based on the actual topology and specifications of
the real network. Then we simulate the algorithms using real
demand data measured in this network. The network has 114
households supplied by a 200kV A transformer. We assume
that 50% of the load in the network is inflexible load which
cannot be managed, 25% of the loads are shiftable and 25%
are storable. Figure 5 shows the total demand before and after
management. Without demand management. The yellow area
represents inflexible loads. The area between the yellow area
and the two lines shows the flexible load patterns before and
after demand management. Without management, there is
a peak which is several times higher than the valley (peak
to average ratio is 1.89). Using our demand management
algorithm, the peak demand is successfully shifted to other
periods and the overall demand pattern becomes much flatter
(peak to average ratio is 1.11). Figure 6 shows the voltage
profile of a random household in the network. Voltage
variations are also well reduced with the algorithms.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a stochastic model to describe
the correlation between voltages and demand in LV networks.
Based on such a model, we propose two distributed demand
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Fig. 5. Demand profile of the network with and without management.
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Fig. 6. Voltage profile of a house with and without management.

management algorithms targeted at shiftable and storable
appliances. Via simulation on a real Australian suburban
network, using real demand profiles, the model is shown
to capture actual voltage-demand relationship and the al-
gorithms are shown to be effective for peak shifting. Most
importantly, the algorithms use only local information, volt-
age, for decision making and do not require any additional
communication infrastructure. Future work includes building
stochastic and/or linear controllers for more accurate control,
application to networks with high solar panel penetration,
application to non-radial networks and application to heav-
ily unbalanced networks, detailed study on fairness, taken
service line impedance into account and modelling loads as
impedances instead of currents.
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