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Abstract: A distributed control algorithm is proposed to manage the electrical power demand
for the purpose of charging electric vehicles so that (a) the overall power demand remains
within the limitations of the distribution network and (b) each vehicle obtains a sufficiently
charged battery at the end of the charging cycle. The charging algorithm utilises only local
measurements to determine the charge current. The control problem is modelled as a non-
cooperative game with weakly coupled cost functions for each vehicle. The cost function for
each vehicle consist of an individual cost term and a group cost term. The group cost term
expresses the aggregated demand of all vehicles and serves the purpose of ensuring that the
infrastructure capacity constraints are respected. It is shown that this term can be estimated
from local voltage measurements. The individual cost term reflects the need to achieve a desired
charge level in the battery. Sufficient conditions for the overall system to admit a unique Nash
Equilibrium are identified. Convergence and stability properties for a particular greedy algorithm
implementation are described. To illustrate the efficacy of the proposed charging methodology,
the algorithm is simulated in the context of an Australian suburban low voltage electricity
distribution network.
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1. INTRODUCTION

It is likely that in the future a significant amount of
personal transport will make use of electric vehicles (EVs)
and plug-in hybrid vehicles (PHEV). The additional elec-
tricity demand required to charge the EV (and PHEV)
batteries is substantial. Indeed, in Australia, using typi-
cal household commute requirements, the corresponding
EV’s energy demand is roughly equal to the present aver-
age per household energy demand. Hence, if all personal
transport would become EV based, domestic electrical
energy demand would double [Mareels et al., 2010]. Under
normal operating conditions, this demand increase could
require a substantial augmentation of the current grid
infrastructure. Alternatively, allowing uncontrolled charg-
ing of EVs on the present grid will lead to unacceptable
frequency and voltage variations, even when only a small
proportion of households use an EV [Lopes et al., 2011,
Kelly et al., 2009]. Nevertheless, as the present grid is
constructed to meet peak demand, its capacity is hardly
ever fully utilised. In Victoria, Australia, half the total
energy capacity of the grid is unused [Mareels et al., 2010].
This indicates that there is an opportunity to allow many
households to use an EV provided this demand could be
shifted as to use the underutilised capacity of the grid.
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In this paper a particular approach to such EV demand
management is presented.

EV demand management can be approached from a cen-
tralized and decentralized perspective. In a centralized
approach, a central controller communicates with all bat-
teries across the network, collating all relevant information
(the state of the grid and each EV), and computes an
optimal charging profile for each battery, which is then
communicated to the batteries [Richardson et al., 2012, So-
joudi and Low, 2011]. This approach requires all vehicles to
participate in the decision making process. Although ideal
from an information point of view, this will require sig-
nificant communication and computation infrastructure.
Moreover, given the size of the network scaling problems
may be expected. A distributed decentralised approach
would allow each EV to calculate its own charging profile
based on information obtained locally [Gan et al., 2011,
Li et al., 2011, Ahn et al., 2011, Studli et al., 2012, Ar-
dakanian et al., 2013]. This will necessarily be suboptimal
compared to the global centralised approach, but is far
more realistic from an implementation point of view. Here
we propose a decentralised demand management strategy,
without addressing the question of how suboptimal the
solution will be.

Our recent work [Xia et al., 2014] formulates EV charging
as a distributed optimization problem. The algorithm al-



Table 1. List of Symbols

m electric vehicle m
M number of electric vehicles

D desired total demand level on relevant phase
D actual total demand on relevant phase
D minimum total demand on relevant phase
pm charging power of electric vehicle m
p−m vector of charging power of all EVs except m
p−m sum of charging power of all EVs except m

Vm local voltage at house m corresponding to D
Vm local voltage at house m (or EV m)

Vm local voltage at house m corresponding to D
Jm cost function of electric vehicle m

E desired aggregated EV demand on relevant phase
αm, βm constants related to the user preferences of EV m
γm scheduled charging power of electric vehicle m

lows EVs to increase their charging power asynchronously
until the aggregated demand reaches a desired level. The
performance of the algorithm is tested through simulations
on a realistic Melbourne suburban network. In this paper,
a theoretical analysis is presented using (non-cooperative)
game theory. EV charging problems have already been
formulated using game theory when control involves a
certain level of communication [Ma et al., 2010]. Also game
theory can explain communication network flow control
where communication for the purpose of control is minimal
or even absent [Altman and Basar, 1998]. As the resource
allocation problem in electricity grids is similar to the
network flow control in communication networks it may be
expected that non-cooperative game theory may equally
elucidate the former’s behaviour.

In our game formulation, the players are the EV batter-
ies, these are non-uniform and coupled in the game only
through their local objective function. Each EV’s objective
function consist of a term penalising total demand devi-
ating from desired value and an individual, local term to
ensure that the battery gets charged. The EVs optimise
their objective functions being influenced by the aggre-
gated charging action of the collective. We argue and show
that the collective action, even though not measurable, can
be approximated by a local voltage measurement. In this
paper, the charging algorithm manages EV charging in a
distributed way using only local information, and within
the capacity of the grid. No explicit communication is re-
quired. The performance of the algorithm is illustrated via
simulations against realistic Australian suburban network
data.

The rest of the paper is organized in the following way. Sec-
tion 2 explains the relationship between local voltage and
total phase demand in an electricity network which will
form the basis of our algorithm. Section 3 introduces the
non-cooperative game model and proves the existence and
uniqueness of the Nash Equilibrium; Section 4 proposes
an iterative update scheme and shows the convergence
to the Nash Equilibrium under this update scheme. The
algorithm is verified via practical simulations in Section
5 using the model of a real Australian network in east-
ern Melbourne; the last section concludes this paper and
points directions for our future work.
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Fig. 1. Diagram of an Victorian suburban distribution
network of 114 houses feed in by a transformer.
Triangles denote houses on phase A; rectangles denote
houses on phase B and circles denote houses on phase
C.

2. LOW VOLTAGE NETWORK MODEL

This paper focus primarily on low voltage networks having
radial configurations. As an example, Figure 1 shows a
typical Melbourne suburban network with 114 houses.
In such networks, there exist an approximately linear
relationship between available capacity on phases, D, and
local voltage levels, V , such that

D −D
D −D

=
V m −Vm

V
m −Vm

(1)

holds. The symbols in (1) are defined in Table 1. As
discussed in [Ganu et al., 2013] and [Xia et al., 2014], heavy
load in a distribution network increases the line voltage
drops which in turn reduces household voltage levels.

The network in Figure 1 is simulated using real daily
demand data to validate (1). For each house in the net-
work, the plot of local voltage verses total demand on
the corresponding phase suggests an approximate linear
relationship which can be easily obtained using linear
regression. We pick a random house W in the network and
show this relationship (Figure 2). The left y axis shows the
24 hour total demand curve for the house W on a typical
winter day. The evening peak as well as the overnight and
mid-day demand valleys can be clearly seen. The right
y axis plots the local voltage level for the house W on
the same day where the voltage drop in the evening is
observed. We next correlate the two figures to plot the
relationship between total phase demand and the local
voltage of house W in Figure 3. The scatter plot clearly
suggests a linear relationship. After linear regression based
on least squares, a line can be easily fit. For different
houses, the line has a different slope and intercept but
the approximate linear relationship as per (1) holds for all
houses.

3. STRATEGIC GAME

We formulate the EV charging problem as an M-player
strategic (non-cooperative) game G = 〈M,X ,J 〉. The
player setM := {1, ...,M} includes all houses with an EV
on a low voltage network. The set Xm ⊂ X denotes the ac-
tions or strategies of a player m from strategy set X which
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Fig. 2. Voltage profile of house W with dotted line on right
axis and corresponding total phase demand with solid
line on left axis.
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Fig. 3. Scatter plot and least square line fitting showing
the relationship between local voltage at house W and
the corresponding phase total demand.

in our case is the charging power. The set J := {J1, ..., Jm}
is the set of cost functions to be minimized for all players.
The cost functions are chosen to be quadratic and consist
of two terms: group cost and individual cost. Group cost
is characterized as the square of distance between total
demand level and the desired demand level; we want each
agent to charge greedily such that the total demand is
around the desired level D. Since we are using local voltage
to approximate total demand, according to (1), our goal
is equivalent to local voltage of agent m being as close to
Vm as possible. Through total demand or local voltage,
all agents are weakly coupled. The other cost we want to
minimize is the cost for individuals deviating from their
charging plans. When EV m is plugged in, the user will
set the total time Tm available for recharging the EV. The
ratio γ = Rm/Tm gives a an average charging power for the
EV to be charged on time; where Rm is the total energy
needed to fully charge the battery of EV m. This average
is a schedule that we want to keep track of. If there is no
such cost term, it is possible that some EVs are given much
more charging power than others but the total demand is
still minimized. Therefore, we guarantee a certain level of
fairness by introducing this term.

It is assumed that total demand on a given phase does
not fluctuate wildly over a given discrete interval of time,

allowing the charging power of EVs to converge to the
equilibrium value. Hence, the actual demand is D = H +∑M

m=1 pm. E thus represent network capacity that is

available to be used for charging. Let km = 1/(D − D).
Then, the cost function for EV m is defined as follows:

Jm(pm, p−m) = (km(E − pm − p−m))
2
+βm

(
pm − γm
γm

)2

,

(2)
where γm is the average charging power from user setting
and where βm is a positive constant that can be used
to tune the system behaviour. In practice, we do not
have access to p−m, but we can estimate this value using
the local voltage Vm as per (1). The cost function (2) is
therefore approximately equivalent to the following cost
function:

Jm(pm, p−m) = Jm(pm, Vm)

=

(
Vm(pm, p−m)−Vm

V
m −Vm

)2

+ βm

(
pm − γm
γm

)2

(3)

The players minimize this cost function by adjusting their
charging power pm. Because of the convexity of (2) with
respect to pm and assuming an inner solution, we take its
partial derivative with respect to pm and let it be zero:

∂Jm
∂pm

= 2k2m(pm + p−m − E) +
2βm
γ2m

(pm − γm) = 0 (4)

For simplicity, we assume here that E ≥ p−m. The solution
to (4) is therefore given as follows:

pm = Φm(p−m, βm, km, γm)

=
k2mγ

2
mE − k2mγ2mp−m + βmγm

k2mγ
2
m + βm

(5)

This is also the best response reaction function of player
or EV m and it is in a linear form. Let αm = (k2mγ

2
mE +

βmγm)/(k2mγ
2
m + βm). Then, we can write the reaction

functions of all player in a matrix form:

pi+1 = Api + α
pi+1
1

pi+1
2
...

pi+1
m

 = −


0 k22γ

2
2 · · · k2mγ2m

k21γ
2
1 0 · · · k2mγ2m

...
...

. . .
...

k21γ
2
1 k22γ

2
2 · · · 0



pi1
pi2
...
pim

+


α1

α2

...
αm


(6)

Proposition 1. Matrix A is invertible (can be proved using
contradiction), therefore, the Nash Equilibrium can be
computed from (6) as:

p∗ = (I −A)−1α

It can be shown that matrix D := (I − A)−1 is non-
singular under non-conservative assumptions using proof
by contradiction again (assume there is a non-zero vector
X such that DX = 0, then only under some very rare
condition can D be singular). Therefore we conclude that
generically, there exists a unique Nash Equilibrium in the
M-player noncooperative EV charging game G.

Corollary 2. For homogenous agents, charging power at
equilibrium can be calculated as follows: if all EVs are
having same setting of β, γ and k, from (5), for any EV
m, we have the following equation at equilibrium:



pm =
k2γ2E − k2γ2(M − 1)pm + βγ

k2γ2 + β
(7)

The solution to equation (7) is

pm =
k2γ2E + βγ

k2γ2M + β
(8)

Remark 3. The reaction function defined in (5) represents
the optimal response of EV m to the charging rate of all
other users. And this charging rate of all other users is only
determined through the sum. Again, in practice, we do not
have access to the value of the aggregated charging rate
from each house’s point of view. However, we can write (5)
equivalently as follows with respect to (3):

pm =
kmγ

2
m(Vm −Vm)/(V

m −Vm) + βmγm
k2mγ

2
m + βm

(9)

Remark 4. The value γm is considered a constant for each
EV in this paper. In order for our algorithm to achieve
optimality, we assume that there is a price incentive such
that all customers behave rationally and do not cheat.
However, in reality, γm can be used as a pricing parameter
and associated with a tally. The users can choose to have
their vehicles charged faster by paying more and γ can
be adjusted to higher value to meet the requirement.
Customers who do not need to use their vehicle in the
next day can choose a very small γ and pay much less than
normal electricity price (making benefit in some sense). We
will carry out more research to study the effect of γ and
how to set the value based on different user requirement.

Remark 5. In terms of hardware implementation, we can
choose parameters for actual system based on calculations
and simulations of a homogenous system. We first of all
write (8) as follows:

pm =
E/M + βγ/(k2γ2M)

1 + β/(k2γ2M)
(10)

There are two terms in the numerator; the first term
indicates the average spare capacity that each household
could have and the second term shows the desired charging
speed from users. If we want the spare capacity in the
grid to play a much more important role in the charging
algorithm, we can set β � 1 and vice versa. If we want
the two terms to be equally weighted, we can simply set
β = k2γ2M .

4. UPDATE SCHEME AND STABILITY ANALYSIS

The Nash Equilibrium solution derived in the previous
section cannot be computed centrally if there is no commu-
nication infrastructure and no centralised decision maker.
However, it can be computed in a decentralised manner
where each agent executes the best-response algorithm
using only local information, in this case voltage measure-
ments. There are a variety of distributed update schemes
such as asynchronous, parallel, round robin, etc. In this
section, we investigate the stability property of our system
under an asynchronous random update algorithm. We
assume that the time is discretized into intervals of several
seconds at a time. At the beginning of interval i + 1, the
player m updates with a nonzero probability πm(i + 1)
based on the residual information from last interval as
shown below.
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Fig. 4. Numerical demonstration of our algorithm for 10
homogenuous players among 91 from cold start.

p(i+1)
m =

{
Φm(p

(i)
−m), with probability πm(i+ 1)

p(i)m , with probability 1− πm(i+ 1)
.

(11)

In reality, changes in charging decisions have an in-
stantaneous effect on the voltages measured by other
users/players. Therefore, we consider an asynchronous up-
date schemes the one most true to reality. Also note that
the update scheme in (11) is very general due to update
probability being dependant on time. Random round robin
or parallel update are special cases under our update
scheme with different probability functions.

Figure 4 shows numerically the asynchronous behaviour
and the convergence of our update algorithm as per (11)
for 10 homogenous players among 91. We do not consider
any constraints in this numerical example and players
update their charging power with a probability of 10%
at each interval. We observe that it only takes a very
short time for the game to converge in this ideal case.
We next establish the stability properties of the algorithm
in Theorem 6.

Theorem 6. Under our random update algorithm, the sys-
tem asymptotically converges in the mean to the unique
NE from any starting point if km, βm and γm are chosen
such that the following condition is satisfied:

M ≤ 2 +
βm

k2m γ2m
, ∀m. (12)

Note that this sufficient condition is easy to satisfy since
k2mγ

2
m is a very small unit free value in most cases.

Proof. The proof here is based on Bertsekas and Tsitsiklis
[1989] and the proof of Theorem 4.1 in Alpcan et al. [2002].
At the unique Nash Equilibrium, we have:

p∗m =
k2mγ

2
mE − k2mγ2mp∗−m + βmγm

k2mγ
2
m + βm

(13)

Let the difference between the mth user’s charging power

and equilibrium power level at interval i be ∆p
(i)
m = p

(i)
m −

p∗m where p∗m is always positive. We will show that the
update function (11) generates a contraction mapping.
From (11), no matter what the equilibrium value p∗m for
user m is, the following holds:



E|∆p(i+1)
m | = E|∆p(i+1)

m |πm + E|∆p(i)m |(1− πm)

=
k2mγ

2
mπm

k2mγ
2
m + βm

∑
n 6=m

E|∆p(i)n |

+ E|∆p(i)m |(1− πm), (14)

where E denotes expected value.

Now let the infinity norm of the vector (∆p1,∆p2...∆pM )T

be ‖∆p‖∞ which is the maximum entry in the vector, we
have

max
m

E‖∆p(i+1)
m ‖ ≤ max

m
(
k2mγ

2
mπm(M − 1)

k2mγ
2
m + βm

+ (1− πm))‖∆p(i)‖∞ (15)

Therefore, it is sufficient for the right hand side of (14) to
be a contraction mapping if the condition in Theorem 6
holds.

It can also be shown that our update scheme ensures
almost sure convergence. We will provide detailed proof
and arguments in our future works as well as a comparison
among different update schemes.

5. SIMULATIONS

In order to verify the actual performance of our algo-
rithm, we ran simulations using a validated model of a
real Victoria suburban three-phase distribution network
with 114 households as shown in Figure 1 on a regular
winter day. We use two case studies: 50% and 80% EV
penetration. Household demand is based on data collected
in this network and vehicle demand is estimated using
real vehicle travel profiles obtained in the area that this
network is located in (Victorian Integrated Survey of
Travel and Activity, 2009). We assume that there is no
distributed generation such as solar panels in the network.
We set the desired demand level to be similar with the
existing peak demand value, which is very low considering
the additional demand from EVs, to test the performance
of our algorithm under extreme conditions. The software
packages used were MATLAB SimPower toolbox for load
flow calculation and POSSIM Simulator which provides
an interface to MATLAB such that the strategies can be
calculated in POSSIM and exported to MATLAB.

Table 2. Performance comparisons under no
EV, uncontrolled charging and distributed

charging.

Algorithm (50% EV) no EV uncontrolled distributed

voltage outliers% 0 2 0

average charging rate n/a 3.45kW 0.89kW

peak vs valley demand 3.63 5.68 3.67

cost for charging n/a $15.86 $14.13

unbalance time% 0.05 1 0

adequately charged% n/a 100 97.55

Algorithm (80% EV) no EV uncontrolled distributed

voltage outliers% 0 2 0

average charging rate n/a 3.45kW 0.61kW

peak vs valley demand 3.63 6.19 3.47

cost for charging n/a $25.34 $21.84

unbalance time% 0.05 1 0

adequately charged% n/a 100 95.16
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Fig. 5. Demand profile of the Melbourne network using our
distributed charging method based on game theory
under 80% EV penetration.
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Figure 5 shows the performance of our distributed algo-
rithm in the network on a typical working day under 80%
EV penetration. It is clear from the figure that demand
peak in the evening decreased and additional demand is
distributed to the overnight demand valley. From 6, it
is apparent that the charge rate (solid lines) are steeper
during overnight period than in the evening peak. In the
morning, all cars are sufficiently charged for the day and
most of them are fully charged. In reality, the desired
demand level can be set to higher values such that EVs
can be charged more and faster as we have shown the
worst scenarios in the simulations. One fact to note about
the EV travelling profiles is that most vehicles are out
for work during the middle of the day. Therefore charging
is not feasible for most households as we only consider
residential charging at this stage. Table 2 presents some
key performance parameters of the system in 24 hours
averaged over several typical winter working days under
three conditions: no EVs, uncontrolled charging and our
distributed charging. The percentage of voltage outliers in-
dicates the percentage of time that the system is violating
the voltage requirements according to distribution code.
The cost of charging calculates the generation price of all



electricity used within that 24 hours subject to a typical
spot price. The unbalance time shows the duration that
the system is experiencing 3% or more phase unbalance per
house over 24 hours. An EV is called adequately charged if
it is charged above 80% before 8am in the morning. Note
that 80% is often much more than what a car needs for
the following day. We can see that without any control, all
EVs will start to charge as soon as they arrive at home and
this increases the peak demand significantly. Furthermore,
the system underperforms in terms of phase unbalance and
voltage quality. Using our distributed charging control, the
peak demand is decreased significantly without violating
any constraints of the network and the electricity price
paid for charging is significantly lower. More importantly,
our algorithm requires no communication infrastructure,
therefore, no update of the existing facilities and it is ready
to be used.

6. CONCLUSION

In this paper, we have established a noncooperative game
framework for the EV charging problem based on only
local information. We have shown empirically that locally
measured voltage can approximate the phase demand.
We have proved the existence and uniqueness of a Nash
Equilibrium as well as the stability of an asynchronous
update scheme under a mild sufficient condition. Simula-
tions conducted using realistic data show that even with a
high (80%) EV penetration rate, the distributed algorithm
successfully mitigates demand peaks, ensures satisfactory
battery levels and certain amount of fairness without vi-
olating any grid constraints. An important aspect of our
algorithm is that it requires no additional infrastructure
and works only with local information.

There are still more work to be done. Some the important
aspects are parameter learning (for the linear relationship
mentioned above), parameter tuning (for the reaction
function) and performance guarantee study. We are also
hoping to generalized the algorithm so that not only it
can be applied on EVs but also some other residential or
commercial appliances like air-conditioning system, water
heating system, etc.
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