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Abstract: The increasing uptake of electric vehicles is likely to put a significant demand on the
electricity grid. However, expensive infrastructure upgrades can be avoided if some of the vehicle
charging can be shifted to off-peak times. We express electric vehicle charging as a receding horizon
optimisation problem in which inherent network limitations are taken into account as linear constraints.
By tuning these constraints, it is possible to push total system performance in one direction or another as
required, and to adapt the solution to a variety of networks and to different sets of network limitations.
We explore in detail this tuning process and discuss the trade-offs involved. There are several emergent
benefits from examining the constraints in this way: a capacity constraint can be used to prevent peak
load increases; a phase unbalance constraint can be used to enforce system rebalancing; and a voltage
limit constraint can ensure that vehicle charging does not push voltages outside allowed limits. Our
conclusions are demonstrated in simulation studies that use a model of a real network, as well as real
demand and vehicle travel data.
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1. INTRODUCTION

Electric vehicles are being promoted by many governments as
a way to reduce greenhouse gas emissions in the personal trans-
port sector, and their market share is steadily increasing. How-
ever, the charging of electric vehicles places a major demand
on the electricity grid. There is a risk that vehicle charging will
coincide with peak demand and lead to problems such as ther-
mal overload, voltage instability, and phase unbalance (Kelly
et al., 2009; Gerkensmeyer et al., 2010; Lopes et al., 2011). This
problem may be alleviated by smart charging: shifting electric
vehicle demand to off-peak times, such as overnight. A variety
of approaches have already been proposed to allow this.

One set of approaches uses a decentralised methodology: ve-
hicles (or vehicle chargers) make decisions on when to charge
individually, without access to any knowledge of system state
(Ma et al., 2010; Gan et al., 2011). Local measurements such as
voltage can be used to estimate existing network load (Ganu
et al., 2012; de Hoog et al., 2013). On the one hand, these
methods do not require installation of costly metering and com-
munication infrastructure; on the other, they may be difficult to
regulate and may struggle to find the best solution.

A completely different set of approaches solves smart charg-
ing in a centralised manner: the timing and rate of charging
for all vehicles is determined by a central solver with access
to full system state (Clement-Nyns et al., 2010; Richardson
et al., 2012; Zhan et al., 2012). Key measurements throughout
the system can be used to guide this decision. The required
communication and control infrastructure needs to be installed,
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but a recent demonstration in the Australian Victoria Elec-
tric Vehicle Trial has demonstrated the feasibility of central
load control where advanced metering is present (Z.Angelovski
and K.Handberg, May 2013). A central solution can arguably
find the best possible way of distributing available network
resources among charging vehicles.

In previous work, we have proposed a way to express electric
vehicle charging at the distribution level as a receding horizon
optimisation problem that is linear in both the decision vari-
ables and the constraints (de Hoog et al., 2014). Using this
formulation it is possible to achieve high levels of electric ve-
hicle penetration without any adverse impacts on existing grid
assets. However, key to the performance of this linear solution
is the expression of the constraints: depending on the choice
of parameters, system behaviour can be strongly pushed in one
direction or another.

The work presented here distinguishes itself from our previous
work by exploring in greater detail the impacts of individual
constraints on the solution of the optimisation, and the trade-
offs involved. The constraints we explore are related to inherent
limitations in the low voltage electricity distribution network,
and aim to:

• Prevent thermal overload of any network assets, such as
lines and transformers

• Prevent excessive phase unbalance
• Prevent voltage at any point of connection in the network

from falling outside of required limits

Finally, we also examine how the choice of charging horizon
affects charging decisions.



2. ELECTRIC VEHICLE CHARGING AS A RECEDING
HORIZON OPTIMISATION PROBLEM

We have previously expressed electric vehicle charging as an
optimisation problem in detail (de Hoog et al., 2014); here we
provide only a brief overview of our problem formulation.

2.1 Decision Variables

The goal of an electric vehicle charging system is to determine
charge rates for all connected vehicles. While charge rates are
typically expressed in terms of power (kW), we choose as our
decision variables the currents (A) supplied to each vehicle.
This is in line with the J1772 standard (SAE, 2001), and allows
us to keep our problem formulation linear. We consider it a
reasonable simplification since voltage is highly regulated and
unlikely to vary much beyond 5% of nominal voltage.

Charging a vehicle can take several hours, so we consider
the full charging horizon, making decisions on all vehicles’
charge rates for every discrete interval within this horizon.
Our decision variables are therefore the currents provided to
each vehicle for charging, xk,t, where k ∈ [1, 2, ...,K] is
the set of all vehicles that are connected and charging, and
t ∈ [1, 2, ..., T ] is our charging horizon, divided into discrete
intervals – a total ofKT decision variables. Since vehicles may
arrive or depart within the charging horizon, the full solution
must be recalculated at every interval (say, every 5 minutes).

2.2 Objective Function

The objective may be tuned in one way or another depending
on what goals are to be fulfilled. If we want to supply as much
energy to the vehicle batteries as the network will allow, a
simple objective is:

max
K∑
k=1

T∑
t=1

xk,t (1)

Alternatively, if we are concerned with fluctuations in the price
of electricity that may affect the cost of charging, a price factor
can also be included, which shifts charging to times when the
price is low. In this case we want to minimise our objective:

min
K∑
k=1

T∑
t=1

p(t)xk,t (2)

where p(t) is a dynamically changing cost per unit of electricity.
In such a scenario, it is essential to include charge targets for all
vehicles, to ensure that not all xk,t are zero. This can be done in
a straightforward way via an additional constraint (for example,
the sum of charging rates for each vehicle must reach state of
charge of 90% within 6 hours).

2.3 Constraints

The constraints for our optimisation problem are defined by
limitations in the low voltage network. We assume a 3-phase
wye-connected network.

Transformer: It is important not to exceed the ratings of
network assets. Distribution transformer loading may be limited
on each phase of the network by the following constraints:

VTx xφ,t ≤ 1
3 P

max
Tx φ ∈ {A,B,C} (3)

where VTx is output voltage of the transformer, xφ,t is total
current on phase φ at time t (including current due to both
household and vehicle loads), and Pmax

Tx is the transformer’s
nominal power rating.

Lines: Line loading can be expressed as a constraint on a
phase by phase basis by:

xφ,t ≤ xmax
φ φ ∈ {A,B,C} (4)

where xφ,t is again total current (household and vehicle) on
phase φ at time t, and xmax

φ is a maximum current rating of
the line serving phase φ of the network. Note that either (3) or
(4) will be a tighter constraint than the other (making the other
redundant), but it is still important to keep both in our problem
formulation since transformer and line specifications can vary
significantly from one network to the next.

Phase Unbalance: It is important for the system not to become
too unbalanced, as this may have adverse effects on system
components and lead to high neutral line currents. Unbalance is
usually measured in terms of percent negative sequence voltage
(|V−| / |V+|), but this is difficult to linearise. Instead we limit
unbalance using:

|xφ,t − 1
3x

total
t |

1
3x

total
t

< q% φ ∈ {A,B,C} (5)

where xtotal
t is the total current in the system:

xtotal
t =

∑
φ∈{A,B,C}

xφ,t

In other words, no single phase load may exceed average phase
load by more than q%.

Voltage Drop: Voltage at every point of connection in the dis-
tribution network must be maintained within upper and lower
limits, according to local distribution codes 1 . Voltage dropping
below this limit can lead to reduced lifetimes of appliances and
other loads. This can occur when vehicles draw high levels of
current which, due to line impedance, incur losses between the
distribution transformer and the house. We approximate voltage
drop in a linear way by assuming that distribution networks are
mainly resistive (a common assumption in low voltage network
modelling), and by examining the individual voltage drops in
each piecewise segment of the line between the transformer and
house k:

VTx −
∑

[V drop
a,b ]k > V min (6)

where VTx is the source voltage at transformer, V min is the
minimal allowed voltage, and [V drop

a,b ]k are all piecewise voltage
drops from source to house k. In other words, each house will
have its own unique constraint that is still linear in terms of the
currents through all other houses (and vehicles) in the network.
(For a more detailed description of how we model voltage drop,
refer to de Hoog et al. (2014)).

We have thus expressed electric vehicle charging as a receding
horizon optimisation problem. The solution to this problem
may be recomputed at each discrete interval, allowing for
dynamic vehicle arrival and departure to be taken into account.
The rest of this paper examines the impact of these constraints
on system behaviour.

1 In Australia, voltage must be within +10% / -6% of nominal voltage 230V,
in other words within [216V 253V].
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Fig. 1. Network model and data used for case study.
Top left: A diagram of the distribution network model used, based on a real network in northern Melbourne, Australia.
Top right: Average household demand for a weekday in June 2012, as measured at the transformer of this network.
Bottom right: Vehicle travel profiles for 57 vehicles obtained in the local government area that this network is located in.
Bottom left: Histogram of daily travel distances for the vehicle travel records obtained in this local government area.

3. SIMULATION FRAMEWORK

To implement our linear program and test our constraints, we
ran a series of simulations using POSSIM 2 , which uses a
MATLAB SimPowerSystems backend for model building and
load flow analysis. We use a model of a real neighbourhood
in northern Melbourne having 112 houses served by a 300kVA
transformer (Fig. 1, top left). Our model is fairly unbalanced,
with 31 houses on phase A, 38 houses on phase B, and 43
houses on phase C. To model household demand we use data
provided by the network operator that was obtained in June
2012, a time of relatively high demand (Fig. 1, top right).

To model vehicle demand, we use data obtained by a state-
wide travel survey (Victorian Integrated Survey of Travel and
Activity, 2009). The resolution of this dataset allows us to
choose vehicle travel profiles specific to the Local Government
Area that our network is located in, which means that we have
both realistic travel distances (to know charging demand) and
timing of vehicle arrivals and departures (to know when they are
available for charging). A histogram of typical travel distances
is presented in Fig. 1 (bottom left), and the average daily vehicle
travel distance in this neighbourhood is 44.6km. The vehicle
travel profiles we use in our case studies are displayed in Fig. 1
(bottom right); clearly there is a lot of flexibility for scheduling
charging overnight.

2 POSSIM: POwer Systems SIMulator, available at www.possim.org

4. RESULTS

As a case study, we examined a scenario in which there is an
uptake of 50%, in other words there are electric vehicles at half
of the households in this network. While such high levels of
electric vehicle ownership are unlikely to be reached for some
time, we considered it a worthwhile exercise to examine the
potential impacts on the network and to better demonstrate the
importance of constraint choice.

4.1 Uncontrolled charging

In the first set of simulations, we allowed all vehicles to charge
at their maximum possible rates (3.45kW at a standard 230V
15A outlet) whenever they arrived at home, and allowed them
to charge to completion. The results are presented in Fig. 2.

Fig. 2a presents total demand. Most vehicle charging occurs at
peak demand time, leading to a 35% increase in peak demand.
Individual voltages at points of connection of all houses on
phase C (the most heavily loaded phase) are shown in Fig. 2b –
each line represents voltage at one house. Notably, during peak
times voltages at 20 houses drop below the minimum threshold
of 216V due to additional vehicle demand. Phase unbalance
(in terms percent negative sequence voltage, |V−| / |V+|) is
shown in Fig. 2c. A peak of 4.28% is reached. Fig. 2d presents
the state of charge of three vehicles’ batteries, with each line
representing one vehicle. Dashed lines indicate that a vehicle
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Fig. 2. Uncontrolled charging: all vehicles charge at the max-
imum possible rate as soon as they arrive at home, and
charge to completion. There is a significant increase in
peak demand, voltages at many houses drop below mini-
mum required levels, and a high level of voltage unbalance
is reached. However, vehicles charge quickly.

is not at home. As can be seen, all vehicles charge at constant
rates and reach full charge as quickly as possible.

This network would not be able to sustain a 50% penetration of
electric vehicles under uncontrolled charging conditions, due to
low voltage at parts of the network distant from the transformer.

4.2 Optimal charging

In our next set of simulations, we applied the objective detailed
in Equation (1) and the constraints described in Section 2.3. For
this set of results (Fig. 3) we limited demand at the transformer
to 220kW and voltage at each house to 216V.

Peak demand hardly increases (due to our 220kW cap), and
much of the electric vehicle load is pushed into the overnight
period (Fig. 3a). Voltages at all houses are kept within required
limits (Fig. 3b). Maximum phase unbalance now occurs in the
middle of the night, and is slightly reduced with a peak of
3.98% (Fig. 3c).

While the network constraints are not violated, the trade-off of
course is that vehicles do not charge as quickly (Fig. 3d):
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Fig. 3. Optimal charging: vehicle charge rates are chosen using
a receding horizon optimal solution. There is almost no
increase in peak demand, all houses maintain voltages
within required limits, and there is a slight decrease in
maximum voltage unbalance. However, vehicle charging
is delayed (although vehicles are charged by morning).

• Vehicle 1 arrives home at 16:00 having state of charge
40%. Initially it charges at its maximum rate but as peak
demand time begins (18:00) its charging is interrupted. It
only starts charging again at 21:00, initially at a reduced
rate, and then at its maximum rate, reaching completion at
1:00.

• Vehicle 2 arrives home at 21:00 having a state of charge of
80%. Since there is still much existing household demand,
it too must wait until 0:00 to start charging, reaching full
state of charge at 2:00.

• Vehicle 3 arrives home at 15:45 having a state of charge
of 58%. It charges at its maximum rate initially, but from
16:30 onwards its charging is interrupted. It cannot charge
again until 2:00, at which point it charges to completion at
4:45. The reason that Vehicle 3 must wait so long is that
it is connected on phase C, the most heavily loaded phase,
and it is far from the transformer. Its impact on voltage
drop is therefore stronger than most other vehicles, and it
must wait longer.



4.3 Impact of Constraints

Clearly there are trade-offs involved between the various con-
straints, and we now explore these in more detail. Unless oth-
erwise specified we are using the objective detailed in Equation
(1).

Transformer

The real network that our model is based on has a 300kVA
transformer, which provides considerable spare capacity. Many
networks, however, will have much reduced available capacity.
Using our problem formulation, transformer capacity may be
shifted up or down and the system responds as required.

Fig. 4 shows the results of modelling the transformer as though
it has a more tightly constrained capacity. As can be seen, the
choice of transformer capacity can lead to a behaviour similar
to water filling: only available capacity up to the threshold is
used. The trade-off, of course, is that vehicles may have to wait
a long time until they are charged, and even when charging may
not get charged as quickly. In the case of a 100kW limit, for
example, almost none of the vehicles achieve 100% charge.

However, for a given electric vehicle penetration and known
household/vehicle demand, it is possible to determine minimum
transformer requirements. In this case, a capacity of 220kW
was sufficient to charge all vehicles by 6:00 in the morning
while meeting peak household demand.

Phase Unbalance

Figure 5 shows unbalance measured in terms of percent de-
viation of each phase’s load from average phase load (left
column) and in terms of true voltage unbalance |V−| / |V+|
(right column) for varying levels of our unbalance constraint.
As we tighten the constraint, the network becomes more and
more balanced. In other words, vehicle charge rates are chosen
in such a manner that they rebalance the network.

The trade-off, once again, is that vehicles (especially those on
the more heavily loaded phase) charge less quickly. There are
also limits to how much rebalancing is possible; in networks
that are more heavily loaded on one phase throughout the day,
for example, it is not possible to perfectly rebalance the network
as the vehicles on that phase must be charged at some point as
well.

Voltage Limit

Figure 6 shows the impact of the minimum voltage constraint.
Each subfigure shows the voltage at the most sensitive node
of the network (the most distant house on the most heavily
loaded phase). This network is already quite unbalanced to
begin with; as Fig. 6a shows, voltage already approaches the
minimum threshold during peak even when there are no ve-
hicles present at all. The impact of this constraint is therefore
more immediately apparent in the period from 1:00 to 5:00.
With a minimum voltage constraint of 216V (Fig 6b), electric
vehicle charging contributes significantly to lowering voltage
during this period. As the voltage constraint is increased, first to
222V (Fig. 6c) and then to 226V (Fig. 6d), the vehicle charging
rates are reduced to ensure that voltage remains higher. In other
words, charging rates are chosen in such a way that electric
vehicle charging does not allow voltage at the last house to drop
below the specified limit.
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Fig. 4. The effect of the transformer capacity constraint. A tight
constraint means that the demand valley is filled, but may
not allow all vehicles to charge. A loose constraint leads to
an increase in peak demand. The constraint may be chosen
so as to make maximum use of available network capacity.

In the examples presented here, the chosen transformer limit
(220kW) is the tighter constraint during peak period, so our
voltage drop constraint is not as important since charging is
limited during peak time already. However, in other networks
we have studied, the voltage drop constraint is typically the
limiting one.

Charging Horizon

Choosing how far to look ahead has a major impact on charging
behaviour. A good way to demonstrate this is to examine
the price-based objective described in Equation 2. Figure 7
shows the wholesale electricity price for 19/20 June 2012 (our
simulated day), as well as the redistribution of electric vehicle
load for look-ahead periods of 2, 4, and 6 hours.

A short look-ahead only takes advantage of local minima in the
price curve; a longer look-ahead can identify the cheapest time
to charge and lead to greater savings. The trade-off once again
is that with a longer look-ahead, there is likely to be a greater
delay in vehicle charging. It is naturally important to ensure that
vehicles are charged at all – the objective in equation 2 does
not guarantee this so charge targets are essential to include as
an additional constraint. It must also be noted that in this case
the solution depends heavily on the accuracy of future price
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8:00 12:00 16:00 20:00 0:00 4:00 8:00
0

10

20

30

Time of Day

%
 d

ev
ia

tio
n

8:00 12:00 16:00 20:00 0:00 4:00 8:00
0

1

2

3

Time of Day

V
− / 

V
+

(c) Phase unbalance constraint of 30%

Fig. 5. The effect of the phase unbalance constraint. Phase unbalance is usually measured in terms of |V−| / |V+| (results on right),
but our constraint is expressed in terms of maximum percent deviation from average phase load (results on left). With a tight
unbalance constraint, true unbalance can be kept low, but vehicles may charge less quickly. With a loose unbalance constraint,
vehicle charging increases but so does the network’s true unbalance.

prediction. However, for aggregators of vehicle charging that
pay a time-varying price, there is a potential for substantial
savings using this method.

Note that the system does not perfectly match electric vehicle
demand to minimum spot price. This is because there are
also other factors at play, such as vehicle charging targets and
vehicle arrival / departure, as well as all of the other network
constraints involved.

In this case we use historical spot price to demonstrate the
method. However, the price-based objective (Equation 2) could
be applied in exactly the same way to renewables, such as
rooftop PV generation. If a high likelihood of distributed gen-
eration can be identified in the future, then vehicle charging can
be scheduled to occur during that time using exactly the same
method.

5. CONCLUSIONS

Electric vehicle charging will have a major impact on distri-
bution networks as EV market share continues to grow. For
large scale electric vehicle uptake it will be essential to shift
vehicle charging to off-peak periods, in order to avoid massive
infrastructure upgrades. In this paper, we have demonstrated
how the inherent constraints in the low voltage distribution
network may be incorporated into an optimal receding horizon
electric vehicle charging solution. In addition, we have shown
how these constraints may be used as tools to adjust system
performance in any of several desired directions.

A transformer capacity constraint can be used to fill the demand
valley and avoid increases in peak demand. A phase unbalance

constraint can be used to enforce system balance, essentially
using vehicle charging as a tool to rebalance the system. A
voltage limit constraint can ensure that electric vehicles do
not contribute to low voltage at any house beyond a chosen
limit. Finally, we have demonstrated that the choice of horizon
has a significant impact on any objectives that might be time-
varying, such as those based on electricity price or availability
of distributed generation.

Network control is a very localised problem, with highly vari-
able network configurations and varying standards for safety in
practice around the world. We therefore consider the kind of
flexibility provided by this tuning of constraints important in
the design of solutions that can be taken up on a large scale.
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(d) Look-ahead period of 6 hours

Fig. 7. The effect of the look-ahead constraint for price-based
optimisation. With a small look-ahead window, only local
minima in the changing price curve are identified. As
the look-ahead window is enlarged, the solution examines
longer future periods and identifies cheaper times for
charging.
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