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Abstract—The increasing uptake of electric vehicles suggests
that vehicle charging will have a significant impact on the elec-
tricity grid. Finding ways to shift this charging to off-peak periods
has been recognized as a key challenge for integration of electric
vehicles into the electricity grid on a large scale. In this paper,
electric vehicle charging is formulated as a receding horizon
optimization problem that takes into account the present and
anticipated constraints of the distribution network over a finite
charging horizon. The constraint set includes transformer and
line limitations, phase unbalance, and voltage stability within the
network. By using a linear approximation of voltage drop within
the network, the problem solution may be computed repeatedly in
near real time, and thereby take into account the dynamic nature
of changing demand and vehicle arrival and departure. It is shown
that this linear approximation of the network constraints is quick
to compute, while still ensuring that network constraints are
respected. The approach is demonstrated on a validated model of
a real network via simulations that use real vehicle travel profiles
and real demand data. Using the optimal charging method, high
percentages of vehicle uptake can be sustained in existing net-
works without requiring any further network upgrades, leading to
more efficient use of existing assets and savings for the consumer.

Index Terms—Distribution networks, electric vehicles, grid im-
pacts, optimization, receding horizon, smart charging.

NOMENCLATURE

Set of houses in the network .

Set of electric vehicles, each associated with a
house, .

Set of discrete time intervals in charging horizon
.

Current (A) drawn by vehicle at time .

Current (A) drawn by household at time .

Total current (A) drawn at household (from both
household and vehicle).
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Total current (A) drawn by all single-phase loads
on phase .

Stored energy (kWh) of vehicle at time .

Maximum allowed stored energy (kWh).

Charging efficiency factor.

Source voltage (V) at distribution transformer,
phase to neutral.

Nominal power rating (kVA) of distribution
transformer.

Current rating (A) of feeder backbone cable, phase
.

Current rating (A) of service line connecting house
to feeder.

Difference between voltage at transformer and
voltage at house at time (V), phase to neutral.

I. INTRODUCTION

E LECTRIC vehicles (EVs) are being pushed by govern-
ments around the world as an alternative to fossil fuel

based transport. As a result, EV market share is starting to in-
crease: a recent report by the U.S. Department of Energy shows
that plug-in vehicle sales are more than double those of hybrids
when comparing the same stages of the technology life cycle
[1].
The charging of so many electric vehicles puts an additional

strain on the existing electricity grid. Since people are likely to
plug in when they arrive at home, there is a risk that vehicle
charging will coincide with peak demand. If vehicle charging is
not controlled, adverse impacts on the distribution network are
expected: power demand may exceed distribution transformer
ratings; line current may exceed line ratings; phase unbalance
may lead to excessive current in the neutral line; and voltages
at customers’ points of connection may fall outside required
levels [2]–[5]. However, these impacts can be alleviated if ve-
hicle charging is shifted to a time when there is more capacity
in the network, such as overnight. An effective shifting of EV
charging load to off-peak periods means that existing networks
can be used considerably more efficiently, reducing the need for
network upgrades and ultimately benefitting the consumer.
The “smart charging” problem is well studied, and many ap-

proaches have been proposed to achieve this behaviour. Several
studies pursue distributed methods, in which charge points or
vehicles make individual decisions on whether to charge or not
using local information [5]–[7]. The advantage of such methods
is that they usually do not require any particular metering or
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communication infrastructure. The disadvantages are that they
may not be able to fully make use of available system capacity
due to limited knowledge of the network’s current state, and that
they may be difficult to regulate.
Other studies use full network state information and con-

trol vehicle charge rates centrally [5], [8]–[14]. One such ap-
proach uses both quadratic and dynamic programming to mini-
mize network losses and voltage deviations [8]. Across a variety
of case studies, it is shown that this approach reduces losses,
improves voltage stability, and decreases peak load when com-
pared with uncontrolled charging. The relationships between
losses, load factor, and load variance are further explored in [9].
Reference [10] proposes a way of expressing centralized EV
charging using results from recent optimal power flow studies.
An optimal problem formulation aims to minimize generation
and charging costs while satisfying all the constraints posed by
the network, and the optimal power flow problem takes into ac-
count both elastic and inelastic loads. Reference [12] similarly
tries to maximize the revenue that a distribution network op-
erator might have in response to network operating costs and
fluctuating wholesale prices. Network voltages are taken into
account by iteratively solving a linear program until all voltages
fall within required levels. Reference [13] uses a two-stage opti-
mization approach, in which the minimum required peak is de-
termined in the first stage, and load fluctuation is minimized in
the second stage by choosing controllable vehicle charge rates
within the allowed peak load. The focus is on cost-benefit anal-
ysis and distribution network constraints are not considered. A
model predictive control framework is proposed in [14] that
minimizes the cost of energy consumption. Network demand
is limited via tracking of a reference load profile defined by the
grid operator.
A further centralized approach uses linear programming to

maximize the total vehicle charging power that the distribution
network allows, while formulating network limitations as con-
straints [11]. Sensitivity analysis is applied to determine how
sensitive the voltage of each node in the network is to the addi-
tion of EV load. The optimal solution allows for the modelled
network to sustain an EV penetration of 50%, as compared with
only 16% in the uncontrolled case.
However, many existing methods suffer from one or more of

the following drawbacks: 1) The charging period is often mod-
elled as a static time interval (typically overnight), in which
vehicles do not arrive or depart; 2) distribution network con-
straints, in particular voltage drop, are often estimated, or only
included in an indirect way; and 3) phase unbalance is often ig-
nored, and limitations are expressed for the network as a whole
when instead they should be expressed on a phase-by-phase
basis.
In reality, vehicles may arrive and depart unexpectedly. Dis-

tribution network constraints can already be breached at very
low vehicle uptake rates: in previous work we have found that
with uncontrolled charging there is a risk of voltage dropping
below distribution code limitations at EV penetrations of only
10% [5] (a finding that is in line with several studies elsewhere,
e.g., [3], [11]). In the networks we have studied (where each
house is connected single-phase), phase unbalance has been a
major factor, with the most heavily loaded phase sometimes
having close to double the total load of the least loaded phase.

In this paper we build on existing work by addressing
these concerns, and provide a novel optimal smart charging
algorithm that allows large numbers of vehicles to be charged
without adverse effects on the network. We express smart
charging as an efficient linear optimization problem that takes
into account both the present and anticipated constraints of
the distribution network over the full finite charging horizon.
Recalculating our solution in discrete intervals allows for the
dynamic nature of vehicle arrival/departure to be accommo-
dated. We model voltage drop explicitly as a linear constraint,
on a phase-by-phase basis, in every lateral of the network. We
maintain separate loading constraints for each phase.
Using this framework, we examine two possible objectives:

in the first, we aim to provide as much charging power to the
vehicles as the network will allow. In the second, we take fluc-
tuations in the electricity price into account and aim to charge
all vehicles within a specified time period at minimum cost.
Our methods are implemented and simulated on a validated

model of a real distribution network, using real travel profiles to
simulate EV behavior and real demand profiles obtained in the
network we are modelling. While we use linear approximations
when solving our optimization problem, the simulations are run
in a fully complex, unbalanced, three-phase load flow scenario.
It is shown that linear approximation in this manner is an

effective, fast way to find a charge scheduling solution. It is also
shown that existing networks can sustain high penetration rates
of electric vehicles, without significant additional investment
into network assets required.

II. UNDERLYING MODEL

A. Preliminaries

We aim to determine the charging rates of vehicles in a radial
distribution network served by one transformer. We assume that
vehicles’ charging rates may be controlled centrally, and may be
set to any value within a given continuous range. We consider
this a realistic assumption since this was recently demonstrated
in the Australian Victoria Electric Vehicle Trial as part of a pilot
load control project [15]. We further assume that the network
operator has access to the following information:
• network size (number of houses);
• network structure (including line segment lengths and in-
dividual phase connections);

• line specifications (impedance per km, nominal current
ratings);

• transformer specifications (nominal power rating).
This information may be used by a central controller to de-

termine the best set of charging rates for all vehicles currently
connected, so that they may charge in a way that maximizes a
given objective while not violating any constraints in the net-
work. In making this decision, we are looking not just at the
current point in time, but at the best possible solution for a finite
future charging horizon in discrete intervals. Since underlying
conditions may change unexpectedly (such as vehicles arriving
or departing), the solution for the full charging horizon is re-
computed after each discrete time interval.
The distribution networks we have studied have had a high

power factor. Fig. 1 shows data obtained in the network pre-
sented in this paper; more than 99% of data points have power
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Fig. 1. Cumulative frequency histogram of power factor measurements in the
data set provided by our utility partner. This histogram reflects 43 317 data
points (14 439 for each phase) gathered in the period 17–27 August 2012 in
the network described in Section VII-A.

factor 0.95 or higher. We therefore consider it a reasonable sim-
plification to use a DC-equivalent model of our distribution
network when formulating our optimization problem. This is
common practice when the angle between source voltage and
load voltage is very small [16]. By doing this we keep our con-
straint set linear, and in most cases it leads to conservative con-
straints. However, when we run our simulations to examine our
solutions (Section VII), we conduct unbalanced, three-phase
AC load flow analyses in fully realistic scenarios that have been
validated to have a high correlation to reality.

B. Notation

Our notation is as outlined before Section I. Let be the set
of houses in the network. (In Australia, houses are typically
connected single-phase.) Let be a set of households
owning electric vehicles. We assume charging decisions can be
made in discrete time intervals; let be the discretized charging
horizon having intervals.
We denote current at point of connection at time as

(current due to household load) and (current due to vehicle
load). Total current at household at time is

We model the network as a three-phase wye-connected
system. Total current on a given phase is the sum of all currents
at any points of connection on that phase:

C. Vehicle Batteries

We use stored energy (kWh) as a measure of how charged the
vehicle batteries are. The stored energy of the battery of the th
vehicle at time must satisfy . We estimate
the future stored energy of a battery using the following:

(1)

where is the nominal voltage of the grid, is current
supplied to the vehicle, is the size of our discretized time
interval and is an efficiency factor (we use 0.9) that takes into
account energy lost due to AC/DC conversion and cooling. The
voltage at point of connection will usually not vary beyond 5%
(limits are imposed by the Electricity Distribution Code [17]),
so we consider this a sufficiently accurate way of estimating a
battery’s stored energy over future time intervals. If necessary, a

conservative nominal voltage may be chosen so that the stored
energy of a battery at a future time interval is not overestimated.
We assume that batteries can be charged at variable rates,

provided minimum and maximum rates are not exceeded (as
demonstrated in a pilot load control trial using commercially
available electric vehicles [15]).
Vehicles arrive and depart independently of one another.

Each vehicle has a charging horizon, with a target of being
fully charged at time .

III. DECISION VARIABLES

In principle, the purpose of our optimization problem is to
determine the amount of power delivered to the grid-connected
electric vehicles. However, because EV charge points follow the
voltage from the grid, which is highly regulated, a charge cur-
rent decision is essentially equivalent (in fact, the J1772 stan-
dard for car battery charging is specified in terms of charging
current, not power [18]). In view of this, we choose the currents
supplied to each grid-connected vehicle as our decision vari-
ables. This further allows us to keep our problem formulation
linear in our decision variables.
Our decision variables are therefore the currents supplied to

all charging vehicles over all intervals in the charging horizon,
which may be denoted by the matrix

...
...

where and . We can rewrite matrix as a vector
by using its column vectors.
The full solution to our problem is recomputed at each in-

terval (e.g., every 5 min). The number of decision variables may
change from one interval to the next, depending on whether ve-
hicles have arrived or departed.

IV. SYSTEM CONSTRAINTS

Our full set of system constraints at any time interval may
be written in the standard format , where the matrix
and the vector result from the grid and battery conditions at
each interval in our horizon. At any point in time there may be
many vehicles in the network, and for each of these vehicles
charge rates must be chosen for all intervals within a given fu-
ture horizon. As a result, the number of decision variables and
constraints can grow quickly (both often in the thousands for
our case study). We therefore make a series of approximations
that allow us to express the constraints in the distribution net-
work in a linear form. This ensures the optimization problem
can be solved very quickly, and makes our method suitable for
near-real-time decisions. Our simulation results (Section VII),
which are conducted in a fully complex, unbalanced, 3-phase,
validated system, suggest that our approximations are justified
since this way of formulating the problem successfully avoids
any network constraints being violated. The effects of lineariza-
tion are also further discussed in Section VII-E.

A. Nominal Power Rating of Transformer

Transformers have a nominal power rating that should
not be significantly exceeded—if it is, transformer lifetime is
reduced. However, transformers often run at 130% of or
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more, which is sustainable as long as there is an accompanying
cooling period. We express this constraint on a phase-by-phase
basis:

%

where is the phase-to-neutral voltage at transformer. Since
we are capping total power for each phase instead of for the
system as a whole, these are conservative constraints.

B. Nominal Current Ratings of Lines

Power lines have a variety of limitations, the most important
of which is current rating. If this is exceeded, cables can be dam-
aged. Let cable have current rating . In the networks we
have studied, backbone and service lines typically have different
specifications. Thus we introduce separate constraints for each
phase of the backbone, and further add individual constraints
for every service line in the network:

C. Voltage Drop

Voltage must be maintained within lower and upper limits
at every point of connection.1 If these limits are not respected,
household loads can be adversely affected.
Consider the simplified network in Fig. 2, where each load
is a combination of household and electric vehicle loads, and

all are on the same phase. The total voltage drop from
transformer to house 4 can be approximated by considering a
DC-equivalent circuit:

and in general at house

Since are a combination of the existing household and elec-
tric vehicle load, and since we are modelling the network as
mainly resistive (using only real power), this becomes a linear
expression. We can now formulate a constraint at every house
at every future time interval to ensure that voltage is high

enough:

Since networks may have multiple laterals, we must consider
what happens when there is a split. Consider the simplified net-
work in Fig. 3. The voltages in each lateral, at and , are not
independent since they share an impedance . To ensure that

1In Australia, voltages at point of connection must be maintained at 230 V,
% %, i.e., in the range 216 V–253 V [17].

Fig. 2. Simple network.

Fig. 3. Simple network with two branches.

voltage remains within limits at all locations in the network, we
consider the worst case when expressing this as a constraint:

where represents the voltage drop across . This can be
generalized to

where are all piecewise voltage drops from source to
house at time . In other words, at each interval, each house
will have its own unique constraint that is still linear in the cur-
rents through all other houses and vehicles in the network. The
performance of this linearization is explored as part of our sim-
ulation case study in Section VII-E.

D. Phase Unbalance

Phase unbalance can lead to overheating of motors, may have
negative effects on electrical equipment, and leads to higher cur-
rent in the neutral (which in turns contributes to voltage drop).
Phase unbalance is typically expressed in terms of percent

negative sequence voltage. However, to keep our constraint set
linear, we express phase unbalance in terms of , the percent
deviation from average phase load:

Note that these constraints are linear when we multiply both
sides of the equation by the denominator.

E. Battery

It is important not to exceed a battery’s maximum capacity.
This can be expressed by the following constraint:
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Batteries further have minimum and maximum possible
charging currents that should be respected to protect the battery
and ensure efficient charging:

F. Charging Targets

Each vehicle has a target of reaching at least 95% of its max-
imum stored energy within a finite, specific time from the
moment it starts charging:

(2)

V. OBJECTIVE FUNCTIONS

We now examine two possible objective functions:

A. Greedy Charging (GC)

Our first objective is greedy: we want to only maximize the
stored energy of all the vehicles without considering pricing or
fairness issues:

(3)

Using the battery state evolution (1), the problem may be equiv-
alently expressed as

(4)

In other words, we want to provide as much possible charging
current as the network will allow.

B. Greedy Charging With Pricing (GCP)

Our second objective is to minimize the cost of charging (a
problem of interest, for example, to a charging provider or ag-
gregator). We use the dynamically changing spot price of elec-
tricity, , as a parameter:

(5)

Since we have charging targets as a constraint (2), our solu-
tion must contain non-zero values for . However, this ob-
jective means that higher charge rates are chosen when the spot
price is low.

VI. PROBLEM COMPLEXITY

In this section we explore the complexity of formulating the
problem using decision variables as described in Section III and
constraints as described in Section IV. We assume as before
that there are houses having charging vehicles, making
decisions over a horizon having intervals.
Using our problem formulation, there will be decision

variables. The number of constraints is summarized in Table I;
the only constraint that may not be immediately clear is phase
unbalance. For this, we need to ensure that each phase does not
deviate from average phase load, and since there are absolute

TABLE I
NUMBER OF CONSTRAINTS FOR HOUSES HAVING CHARGING VEHICLES

OVER A CHARGING HORIZON OF INTERVALS

values involved we have two constraints for each phase for each
time interval. Summing the rows presented in Table I leads to a
total of constraints.
As an example, for the case study explored in Section VII

we will have 114 houses with 57 vehicles, making decisions in
15-min intervals over an 8-h horizon (for a total of 32 intervals).
In the worst case (when all vehicles are charging), there will
thus be 1824 decision variables and 11 385 constraints. By lin-
earizing the constraints, this problem can be solved in a matter
of seconds on a standard desktop PC using the MATLAB Op-
timization Toolbox. This speed of computation becomes all the
more important if the method is to be applied to multiple net-
works, or at a higher level such as the substation.

VII. IMPLEMENTATION AND RESULTS

In the preceding sections, several simplifications were made
to allow us to keep our problem formulation and constraints
linear. In this section we implement and test our solution on a
validated model of a real network, and run fully complex, unbal-
anced, three-phase load flow analyses in each interval. Testing
our solution under fully realistic conditions allows us to confirm
whether our simplifications were justified or not.

A. Simulator, Data, and Case Study

Our simulations were conducted in POSSIM,2 a tool devel-
oped at The University of Melbourne for analysis of distribu-
tion networks. POSSIM is a C++ based simulator that uses a
MATLAB SimPowerSystems backend for model building and
load flow analyses.
To conduct a realistic case study, we developed a model of a

real suburban distribution network inMelbourne containing 114
customers [Fig. 4(a)]. Detailed demand data was provided by
the network operator for each phase [Fig. 4(b)]. Individual phase
connections were not provided, but could be estimated using
aggregated load data. As can be seen, this is a fairly unbalanced
network with 50 houses connected to phase A, 43 houses to
phase B, and 21 houses to phase C. Each house was assigned an
average load profile on a per-phase basis using the data obtained
in the network, having both active and reactive power demand.
The network is served by a 300 kVA transformer. Line im-

pedances for both backbone and service lines were provided
by the network operator, as were distances between poles and
lengths of individual service lines. A validation cycle in which
we compared our simulated voltages and currents to those mea-
sured in the real network concluded that on average, voltages

2POSSIM: POwer Systems SIMulator. Available at http://www.possim.org.
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Fig. 4. Network model and data used for case study. (a) Diagram of network.
(b) Household demand for a weekday in August 2012. (c) Vehicle locations
(charging availability). (d) Vehicle travel distances (charging needs).

were within 1–2 V ( % difference), and currents were within
4–6 A (5–7% difference)—in other words, a fairly close corre-
lation between simulation and reality [19].
To model EV arrival/departure and travel distances (i.e.,

charging needs), we used travel survey data gathered by the
Victoria Department of Transport in 2009 [20], which contains
individual vehicle travel records for 24-h periods. We refined
the data set of all vehicle trips to only those trips made in the
local government area of our network, on weekdays, having
a total travel distance of less than 160 km (a range in line
with many commercial electric vehicles available today). This
left us with 324 individual records that could be assigned, at
random, individually to each vehicle in our case study. Fig. 4(c)
shows when vehicles are typically at home and available for

Fig. 5. Uncontrolled charging. (a) Total demand. (b) Vehicle charging rates.
(c) Household voltages. (d) Unbalance.

charging, and Fig. 4(d) shows the travel distances for people in
this neighborhood (average daily travel is 37.7 km).
We assumed the vehicles to have a 24 kWh Li-ion battery

(again, similar to many of today’s commercial EVs). Battery
charging was modelled using a simplified Li-ion battery model
that takes into account internal resistance, dynamic state-of-
charge dependent open circuit voltage, and maximum voltage.
The charging process follows a constant power, constant voltage
process, with a voltage limit of 4.2 V. Battery discharge is dif-
ficult to model and depends on factors that are difficult to sim-
ulate, such as driving style. To maintain consistency across all
of our runs, we assumed an average discharge rate directly pro-
portional to distance driven. While this may not provide real-
istic variability in discharge from one battery to the next, it does
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TABLE II
COMPARISON OF KEY PERFORMANCE METRICS FOR DIFFERENT CHARGING METHODS. PER-UNIT VALUES USE 130 KVA (130% OF THE 100 KVA TRANSFORMER),

230 V (NOMINAL VOLTAGE), AND 350 A (OUR CABLES’ MAXIMUM CURRENT RATING)

provide a good estimate of the total charging needs across the
network as a whole.
As a case study, we chose a scenario in which 50% of house-

holds own an electric vehicle. While such high levels of EV
ownership are unlikely to be reached for many years, we consid-
ered it a worthwhile exercise to examine the potential impacts
on the network. We further used a transformer capacity of 100
kVA in our simulations—this is much tighter than the real limit
of 300 kVA, but is useful for emphasizing the different behav-
iors of our algorithms.

B. Uncontrolled Charging

In a first set of simulations, we allowed all vehicles to charge
at their maximum possible rates (3.45 kW at a standard 230 V
15 A outlet) whenever they arrived at home, and allowed them
to charge to completion. In this scenario, most vehicle charging
occurs at peak demand time [Fig. 5(a)], leading to a significantly
higher peak.
Fig. 5(b) presents state of charge of individual vehicles, with

each line representing one vehicle. Dashed lines indicate that a
vehicle is not at home. As can be seen, all vehicles charge at their
maximum rates and reach full charge as quickly as possible.
Individual voltages at point of connection of all houses on

phase A (the most heavily loaded phase) are shown in Fig. 5(c).
Notably, during peak times voltages at many houses drop below
the minimum threshold of 0.94 pu due to additional vehicle
demand.
Phase unbalance is shown in Fig. 5(d), where

each line represents unbalance at one pole in the network. This
network is unbalanced to begin with but at peak an even higher
unbalance of 4% is reached.
Key performance metrics are displayed in Table II. As can

be seen, uncontrolled charging leads to a significant increase
in peak/base ratio, overloading of the transformer, and voltage
dropping below distribution code limits at 14 houses.
In the real network, even the high peak demand resulting

from uncontrolled charging would be sustainable with a 300
kVA transformer. However, due to voltage dropping below code
limits, this network would not be able to sustain a 50% penetra-
tion of electric vehicles under uncontrolled charging conditions.

C. Greedy Charging

In our next set of simulations, we applied the greedy charging
algorithm detailed in Section V-A. The results are presented in
Fig. 6 and key performance metrics are listed in Table II. There
is an increase in peak demand [Fig. 6(a)], but it remains below

130% of transformer capacity (100 kVA).Most vehicles can still
charge at their maximum rates, but some have noticeably re-
duced rates at particular times in order to prevent the system ex-
ceeding any of the network constraints [Fig. 6(b)]. However, all
vehicles are fully charged by their target charge goal, and in fact
all vehicles are fully charged by 4:30 am. Voltages are consid-
erably more stable than in the uncontrolled case, with no house
falling below the 0.94 pu minimum threshold [Fig. 6(c)]. Phase
unbalance is also noticeably improved as compared with the un-
controlled case, with a peak unbalance of 3.09% [Fig. 6(d)].
Using the greedy charging algorithm, therefore, this network
would be able to sustain a 50% electric vehicle uptake.

D. Greedy Charging With Price Consideration

The results of implementing our greedy charging algorithm
that takes price into account (Section V-B) are shown in Fig. 7
and key performance metrics are listed in Table II. To model the
electricity spot price, we used historical wholesale price data for
the same day on which our demand data was collected (Fig. 8).
Our look-ahead window in this case was 8 h; it can clearly be
seen that the greedy charging with price algorithm successfully
identifies times of low spot price and allocates charging to these
intervals. When a lower future price is identified, vehicles do
not charge for a long time after connection, but are still suc-
cessfully charged within their target completion time [Fig. 7(b)].
However, in some cases, this means they are not charged by 8
am (although this could be fixed with a tighter charging target).
Despite the high peak at 4 am (when the price is low and many
vehicles charge) house voltages remain within required limits
[Fig. 7(c)] and phase unbalance stays lower than in the uncon-
trolled case [Fig. 7(d)].
As the cost per kWh figures in Table II show, for the case

study presented here greedy charging with price consideration
leads to 10% savings in the cost of charging this set of vehicles,
as compared with uncontrolled charging. In this particular 24-h
period, the price fluctuations were onlyminor, and onmany days
the savings could be considerably greater still (the spot price in
Australia can go as high as $13 100/MWh).

E. Performance of Linear Constraints

As discussed in Section VI, the optimization problem as
posed in this paper can quickly grow to thousands of decision
variables and constraints. To reduce computation time and
allow near-real-time computation, our constraints have been
linearized (Section IV). This linearization is achieved by as-
suming a DC-equivalent model of the network (and only real
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Fig. 6. Greedy charging. (a) Total demand. (b) Vehicle charging rates.
(c) Household voltages. (d) Unbalance.

power demands) when calculating transformer, backbone, ser-
vice line, and voltage drop constraints. While this significantly
reduces our computation time, a drawback of this linearization
is that we are only approximating the solution space, and that
the computed solution may not in fact be the true, globally
optimal one. In this section we explore the cost of this lineariza-
tion, and discuss how close to the true global optimal solution
our approximate optimal solution is.
Since we do not have a globally optimal solution available

(we intend to pursue this in future work), we conduct this eval-
uation by examining at every stage the presently active con-
straints. Fig. 9(a) shows which constraints are active during the
greedy optimization run previously presented in Fig. 6 and dis-
cussed in Section V-A. This scenario uses a transformer capacity

Fig. 7. Greedy charging with price. (a) Total demand. (b) Vehicle charging
rates. (c) Household voltages. (d) Unbalance.

Fig. 8. Effect of spot price on charging demand when using the price-based
greedy optimization method.

(denoted “TX” throughout Fig. 9) of 100 KVA, a backbone cur-
rent rating (denoted “BB”) of 350 A, a service line rating (de-
noted “SL”) of 100 A, and a minimum allowed voltage (denoted
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Fig. 9. Active constraints for four separate scenarios. (a) Active constraints for
a scenario in which transformer capacity is the main limitation. (b) Active con-
straints for a scenario in which voltage drop is the main limitation. (c) Active
constraints for a scenario in which the backbone’s current rating is the main lim-
itation. (d) Active constraints for a scenario in which the service line’s current
rating is the main limitation.

“Vmin”) of 216 V. As can be seen, the transformer in this case
is the limiting factor during peak hours. When transformer ca-
pacity is increased, the main limiting factor becomes voltage
drop [Fig. 9(b)]. When backbone current rating is decreased, the
backbone becomes the main limiting factor [Fig. 9(c)]. Finally,
when the service line current rating is decreased, individual ser-
vice lines become the main limiting factors [Fig. 9(d)].
By examining these four different scenarios, we were able

to generate data for each of the four constraints that we are in-
terested in. To examine how these constraints are affected by
our linearization, we generated the solution to the optimization

Fig. 10. Constraint errors due to linearization, for transformer capacity (TX),
backbone current rating (BB), service line rating (SL), and voltage drop (VD).

problem, then applied the solution to our model and ran a fully
complex load flow, and finally compared the outputs of that load
flow to the hard limits existing in the network. The error due to
linearization was then computed as

%

For example, if the active constraint in our linearized optimal
solution leads to aminimum voltage at house of 220V, but the
real limit is 216 V, then the error due to linearization is 1.85%.
Fig. 10 shows the average errors obtained for each of our four

constraints, averaged over all four scenarios discussed above.
The error bars indicate maximum and minimum error obtained
for each constraint at any point during any of the runs.
The greatest errors are obtained for the transformer capacity,

with a maximum error of 4.46%. This is due to the fact that the
loads in our system are actually inductive, and additional power
is required due to reactive power demands that our optimal solu-
tion does not consider. However, we constrain demand on each
individual phase, so even a slight excess demand on one phase
does not lead to an excess of total transformer demand (which
we do not see at all in our simulations).
Encouragingly, only small errors were obtained for

voltage drop, suggesting that the linearization as described
in Section IV-C is indeed an effective way to constrain voltage.
While this does not provide a definitive answer to how close

our approximate solution is to the real solution, we consider
the errors due to linearization, for the most part less than 3%,
to be an effective compromise in return for significant gains
in the speed of computation. In addition, the simulation results
presented in Section VII-A confirm that the proposed method
allows effective charging of vehicles without network constraint
violation. We intend to compare these results to fully complex
optimal solutions in future work.

F. Maximum Possible Vehicle Uptake

Both the vehicle profiles that are chosen, and the locations in
the network that vehicles are assigned to, can have a big impact
on whether a simulation run succeeds or not (for example, loads
at the far ends of the network have considerably greater impact
on voltage drop than loads near the transformer, see also [19]).
In a separate set of simulations, we examined a large number
of different configurations having a variety of EV penetration
levels, for each charging algorithm.
Uncontrolled charging could only be sustained in this net-

work to penetration levels of 10–15%. Beyond this, typically
low voltage issues caused our runs to fail. For optimal greedy
charging (with or without price consideration), all simulation
runs up to penetration levels of 80% succeeded. Beyond this,
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there were instances where no solution to the optimization could
be found. We consider this an encouraging result: using central-
ized, optimal charging, high levels of EV uptake are sustainable
without any major infrastructure upgrades being required.

VIII. CONCLUSION

In this paper we expressed electric vehicle charging as a linear
optimization problem that takes into account both the present
and the anticipated constraints in the distribution network over
a finite charging horizon. The solution for the full horizon can
be recalculated in discrete intervals, taking into account the dy-
namic nature of changing demand and vehicle arrival/depar-
ture. We implemented two objectives: the first maximizes total
charging of all vehicles, and the second minimizes the cost of
charging. Our solutions were tested in a validated model of a
real network, using demand and vehicle travel data obtained in
this network.
The main conclusions of this paper are the following:
• By implementing load control as proposed here, existing
networks can sustain high electric vehicle uptake rates,
without the need for further infrastructure upgrades. In
other words, existing assets may be used much more ef-
ficiently, leading to savings for both network operator and
consumer. In our case study based on a real network in
Melbourne, Australia, uncontrolled vehicle charging can
lead to network failures at uptake rates of only 10–15%.
With optimal load control, vehicle uptake rates beyond
80% would be sustainable.

• In the network we studied (where power factor is high),
a linear approximation of key network constraints such as
transformer capacity, line current ratings, and voltage drop
is an effective way to simplify the problem and allow faster
and more repeated computation of the solution. Particu-
larly if scaling up to larger networks, or if trying to solve
load control problems at e.g., the substation level, such a
trade-off in solution accuracy may be worth the gains in
computability.

• Price-based optimal charging can effectively schedule ve-
hicle charging during times when price is low, thereby of-
fering significant savings in the cost of charging %
in the case study presented here, and likely more on days
which see greater fluctuations in the wholesale electricity
price.

In ongoing work, we are considering how to generalize the
present analysis and approach to low voltage networks where a
significant amount of harmonic distortion exists, and/or where
current and voltage waveforms show significant phase shift. We
further intend to examine how the unpredictability of spot price
and base load demand affect our solution, extend this work to a
fully complex, nonlinear AC formulation, examine the impact
of distributed generation, and explore some of the issues sur-
rounding fairness.
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