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Abstract. Multi-agent exploration of unknown environments with lim-
ited communication is a rapidly emerging area of research with applica-
tions including surveying and robotic rescue. Quantifying different ap-
proaches is tricky, with different schemes favouring one parameter of the
exploration, such as the total time of exploring 90% of the environment,
at the expense of another parameter, like the rate of information update
at a base station. In this paper we present a novel approach to this prob-
lem, in which agents choose their actions based on the time preference
of the base station for information, which it encodes as the desired min-
imum ratio of base station utility to total agent utility. We then show
that our approach performs competitively with existing exploration al-
gorithms while offering additional flexibility, and holds the promise for
much improvement regarding incorporation of various information pref-
erences for the base station.

1 Introduction

Multi-agent exploration of environments where communication between agents
is limited has been a rapidly emerging area of research in recent years. Several
approaches have been suggested, ranging from those that aim to always maintain
a communication link between the agents and the base station, ensuring that
any new information gets to the base station as soon as it is discovered [8, 1], to
approaches where agents are allowed to explore the environment without putting
any effort to bring the information back to the base station until the exploration
effort is over [13], to strategies that lie in between.[6, 3, 9, 10]. For simplicity of
modelling most of the work has assumed a two-dimensional environment where
the aim is to provide information at a single base station, but the approaches
have natural extensions to more complicated domains.

Each of those approaches has their strengths and weaknesses; they all work
best in different specific scenarios. From looking at their performance, we can
see that there is one major factor that allows us to decide which approach to
choose in favour of another in any given situation - and that factor is the time
preference of the base station for information about the environment. The base
station may value information obtained sooner higher than information obtained
later - for example, when rescuing people from a building that is on fire, the
human rescue team is likely to prefer to have information about some of the
environment sooner, than have a complete map of the environment later, when
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it may already be too late. In other scenarios, however, we may prefer to have
information about the whole of the environment sooner, and not be too interested
in getting a more constant flow of information. We may also have preferences
that lie somewhere in between.

In this paper we present a novel approach that attempts to solve the problem
by providing the human operator controlling a team of robots with an intuitive
way of specifying what their time preference for new information is, and have
the agents automatically adapt their cooperative behaviour accordingly. We de-
scribe our approach in section 3, and in section 4 we present results obtained in
simulation that show how with our approach, agents can adapt their behaviour
to changes in the time preference. We also compare our results with other ap-
proaches, and analyse how the performance of the system changes as the time
preference is changed. In section 5 we discuss ways in which this approach can
be further developed and extended.

2 Related work

Since our approach was developed to primarily deal with scenarios where a team
of agents has a goal of exploring an unknown environment, while having lim-
ited communication between each other and the base station, in this section we
will give an overview of some of the existing approaches to the same problem.
Of course, when exploring unknown environments with limited communication,
there is always going to be a tradeoff between the speed and frequency of getting
new information to the base station, and the time it takes to explore the whole
environment. To the best of our knowledge, all existing approaches to the prob-
lem optimise for a particular tradeoff between the two. Here we will look at an
approach that aims to explore all of the environment as soon as possible, and an
approach that aims to minimise the latency in getting new information to the
base station while still being able to explore all of the environment in reasonable
time. All of the approaches we describe here are built upon the frontier-based
exploration framework as described in [11].

2.1 Frontier exploration

Using frontiers to distribute the exploration task among multiple agents is a
common approach to multi-agent exploration. A frontier is a boundary between
the explored and the unexplored parts of the map. [13] Agents can then allocate
frontiers among themselves by estimating the path costs of themselves and other
agents in their vicinity to the frontiers, so as to maximise overall exploration
utility. However, a frontier on its own gives no information on the potential
information gain of exploring the area that lies behind the frontier, which can
lead to inefficient allocations. The concept of frontier polygons was introduced in
[12] to deal with that problem; a frontier polygon is the polygon that is formed
between a frontier and the boundaries of safe space. Safe space is comprised of
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Fig. 1. An example of a map in simulation with visible frontier polygons. A robot
is shown in blue, green areas are ’safe space’, while white areas need to be further
explored and are bounded by ’frontier polygons’, shown in red.

the areas of the map that the agent has been closer to than the full range of his
sensor (normally, it is set to be around half the sensor’s full range).

We can then estimate the potential information gain from a frontier by using
the area of the frontier polygon as the estimate. This can be especially impor-
tant for our proposed approach, as having an estimate of potential information
gain from a frontier is crucial when deciding whether to continue to explore the
frontier, or to return to the base station; but it can enhance the frontier explo-
ration approach in general by allowing agents to better allocate frontiers among
themselves. In particular, we can control the exploration behaviour by setting
the constant n in the equation which estimates the potential information gain
when calculating the utility of a frontier

U(pi) = A(pi)/C
n(pi) (1)

where U(pi) is the utility of the frontier polygon pi, A(pi) is the area of
the frontier polygon, and C(pi) is the cost of the path to the frontier polygon’s
centre. Low values of n mean that agents will favour the exploration of larger
frontier polygons, such as corridors or halls, and higher values of n mean that
the agents will more often tend to examine nearby smaller areas, such as rooms
[11]. In most experiments in this paper we used the value n = 2, which tends to
provide a good balance between the two in practice [5].

2.2 Return when done

This strategy is the most straightforward, and is the direct application of frontier
exploration. All agents continue to explore the environment without having to
return to the base station at regular intervals, and only once all the frontiers
have been explored do they return to base. In practice, this often ensures that
the whole of the environment is explored in shortest time, however that may not
always be the case due to the fact that only returning to the base station after
the exploration is finished means that not only is the base station not getting
frequent updates on the exploration effort, but information sharing between
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agents may also be reduced, which may lead to the same areas getting explored
more than once.

2.3 Role-based Exploration

With this approach, agents are divided into two groups: explorers and relays.
The task of the explorers is to explore as much of the environment as possible
and return it back to pre-agreed rendezvous points at pre-arranged times. The
task of relays is to communicate information between rendezvous points (where
they communicate with explorers or other relays), or between a rendezvous point
and the base station.

Here, teams of agents have a rigid hierarchy tree which is manually selected
before the agents enter the environment; however, agents may switch positions
in the tree throughout their mission. However, the shape of the tree itself does
not change.

Fig. 2. An example of the agent hierarchy tree. The base station is at the root of the
tree; relays are shown in red, and explorers are shown in blue.

When an explorer meets its parent relay, they exchange information about
the environment, ensuring that they both have the same knowledge about it.
Then, the explorer suggests a rendezvous point, normally near a frontier that
it plans to explore next, and a fallback rendezvous point in case the primary
one cannot be reached, which is especially useful in dynamic environments (if
the explorer and the relay happen to meet before they both reach their meeting
point, they act as if they have reached it and proceed to exchange information
and to replan their next meeting). Because the explorer and the relay share the
same information, the explorer can predict how long it will take for the relay to
get back to its own parent, and then travel to the new meeting point, and can
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therefore decide when it should stop exploring the new frontiers and get back to
the agreed rendezvous point [6].

The selection of the rendezvous points is therefore crucial for the performance
of the algorithm, as it affects how long the agents get to spend exploring the
environment, and how often they deliver their information back to the base sta-
tion. The further away from the base station the meeting points are, the more
biased the exploration effort is to exploring deeper into the environment instead
of relaying the information back [4]. Also, selecting meeting points at junctions
and in corridors where the communication range is wider leads to increased per-
formance of the exploration approach. [7]. However, this approach does not allow
to easily move the rendezvous points closer to the base station / deeper into the
environment to favour either faster exploration or more frequent communica-
tion with the base station, and as such, when comparing our proposed approach
against it, we used the implementation described in [4], where rendezvous points
are selected as close as possible to the frontier that the explorer plans to inves-
tigate next, while trying to place the meeting point in a junction or an open
space, which maximises communication range.

3 Proposed Method

3.1 Overview

When a team of autonomous agents is sent to explore an unknown environment
where communication is limited, resources can generally be allocated in two
different ways: collecting new information about the environment; and keeping
the base station (and other agents) updated of the current progress made by the
agents. Usually, an agent would have to allocate its resources to only one of the
above tasks at any given time. As a result, the human operator commanding a
team of robots would need to somehow specify how the team resources should
be allocated between the two tasks.

There are several straightforward ways of doing that. The operator may want
to specify maximum latency of information propagation in the team - that is,
the maximum time between information exchanges of an agent with the base
station. While at first it seems like a useful way of specifying the desired team
behaviour and resource allocation, there are several problems with it. How can
the operator know apriori what maximum latency is appropriate for a given sce-
nario? It is likely to be desirable for the latency to be very low at the start of the
exploration, while the agents are exploring parts of the environment close to the
base station, and to increase as the agents progress deeper into the environment.
But how should the latency increase, to ensure that agents do not waste their
resources communicating with the base station when no new information has
been discovered to communicate, and that all of the environment gets explored?
The operator may not have the answers to these questions without some infor-
mation about the environment, and by the time that information is obtained it
could be too late to set the behaviour of the team.
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Another way of specifying the desired team behaviour could be by setting the
rate of information update at the base station to be a function of utility gathered
by the agents that has not yet been delivered to the base station. For example,
if we are only interested in building a map of the environment, the operator
might specify the desired team behaviour by setting the target minimum ratio
of information about the environment known by the base station, to the amount
of information known by all the agents combined (Fig. 3).

Fig. 3. A graph showing combined team knowledge and base station knowledge changes
with time over the course of a simulated exploration mission using role-based explo-
ration strategy.

That single parameter, the target ratio, would then be a real number ranging
from 0 to 1. Setting it to 0 would result in greedy exploration behaviour, where
all of the team resources are used to gather new information; while setting it to
1 would ensure maximum connectivity to the base station. By setting the ratio
to a value between 0 and 1, it is possible for the operator to specify how they
want the team resources to be allocated between discovering new information
and maintaining communication with the base station in a meaningful way. Of
course, as the agents in the team are operating with limited information about
the state of other agents in the team and about the environment, their behaviour
will not match the target ratio precisely, but as we show in the section describing
our simulation results, even with the team using a simple heuristic that crudely
approximates the resulting ratio, it provides a promising way of specifying the
desired team behaviour, with the team behaviour changing accordingly with the
target ratio changes.
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3.2 Implementation

For this paper, we used a simple implementation of the approach described
above. Before the start of the exploration, the user sets a target information
ratio targetInfoRatio ∈ [0; 1), which gets propagated to all the agents in the
team before the exploration begins.

For each agent i, let infBasei be the information i believes the base station
to have at the current time. infBasei is obtained directly from communicat-
ing with the base station, or from communicating with other agents that have
communicated with the base station more recently than i.

Let infNewi be the information about the environment that i knows, ex-
cluding infBasei, and excluding the information that i has given to other agents
to relay to base. When i gets into communication range with an agent j, and
j is closer to base than i, infNewi is added to infNewj , i marks infNewi as
relayed and hence sets infNewi to ∅. This is done to reduce the risk of several
agents trying to deliver the same information to base.

Then, during each cycle of the exploration, each agent can be in one of
two states: exploring the environment (using the frontier exploration approach
outlined in section 2.1), or returning to the base station. An agent i only decides
to return to the base station if

|infBasei|/(|infBasei|+ |infNewi|) < targetInfoRatio, (2)

where |infBasei| and |infNewi| are the utilities of infBasei and infNewi

accordingly. Otherwise agent i continues to explore the environment.

4 Simulation Results

4.1 Simulator

We used the MRESim simulator [6] to evaluate our approach. MRESim simulates
sensor data, communication, movements and collisions of multiple agents in a
2D environment consisting of free space and obstacles. The actions performed
by the simulator at each time step are shown in Algorithm 1.

Actions taken at each time step by MRESim

foreach agent do
nextLoc = requestDesiredLocation(agent);
if isValid(nextLoc) then

move(agent, nextLoc);
sensorData = simulateSensorData(agent, nextLoc);
sendData(agent,sensorData);

end
end
foreach agent do

foreach agent2, agent2 != agent do
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if isInRange(agent, agent2) then
communicateData(agent, agent2);

end
end

end
updateGUI();

The simulator assumes perfect localisation and sensor data. While this as-
sumption is unrealistic, it still allows us to get a good idea about how differ-
ent agent cooperation strategies perform against each other and see what their
strengths and limitations are.

For all of the experiments, we used a standard path loss communication
model with a wall attenuation factor [2].

4.2 Set up

We used 4 different maps for our experiments, as shown in Fig. 4: a small room-
based map that consists of corridors and a number of rooms to be explored;
a cluttered environment; a large ”library” map, consisting of many rooms and
corridors to be explored; and a large outdoor environment. We initially did 4
runs on each of the maps using 6 different exploration strategies, a total of 96
runs: using our approach with target ratios of 0.95, 0.90, 0.75, 0.50 and 0.30 and
using role-based exploration. For each of the runs on the first and second maps,
we had a total of 4 agents navigating the environment; for the library map and
for the outdoors map we used a total of 8 agents. In the runs where we used
role-based exploration, half of those agents were assigned the roles of “relays”,
each of them relaying information for one other agent.

The results obtained from doing the runs on the 4 maps appeared to be
similar to each other, so we decided to focus on running a larger number of
simulations on the ”rooms” map. We ended up doing 48 runs of each type on the
”rooms” map, for a total of 288 runs. We present the results of those simulations
below.

4.3 Results

The results of the simulation runs on the ”rooms” map are shown in Fig. 5.
As we can see, our approach with a target ratio of 0.95 manages to explore

98% of the environment faster than role-based exploration, while the average
ratio of total agent knowledge to base station knowledge is very similar to that
of role-based exploration. This was an expected result, as our approach does not
designate a number of agents to be used only as relays throughout the simulation
runs, which should result in a more efficient use of resources to reach a particular
target ratio.

Another interesting observation is that as we decrease the target ratio from
0.95 to 0.3, reducing the average and minimum actual observed ratios between
total agent and base station utilities accordingly, it has less and less of an effect
on increasing the overall speed of exploration.
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Fig. 4. 4 maps used in the simulations: rooms, cluttered, library and outdoors (starting
from top left, clockwise)

4.4 Emergent behaviour

During our simulations, we found that with higher values for the target ratio
and with higher number of agents (4 or more), at the start of the exploration,
all of the agents go off to explore new frontiers and to collect new information.
However, as the exploration effort gets deeper into the environment, a number of
agents end up acting as dedicated relays, simply going back and forth between
the base station and the other exploring agents. Often, agents would behave as
chains of relays - at the later stages of the exploration, for example, it is possible
for the majority of agents to start acting as relays and only for a few agents
to keep exploring. Of course, there is no explicit agreement made between the
agents to allocate or assume those roles, and neither do they make agreements
about where or when they should meet. The way it appears to happen is as
follows:

1. A number of agents meet while they are returning to the base station to
deliver their information. This may happen either if the agents flock to an
area that has a number of promising frontiers, or if they meet in a corridor
while returning to the base station from different areas.

2. They exchange information, and the agent nearest to the base station as-
sumes the responsibility of delivering their combined new information to
base.

3. After delivering that information, this ”relay” agent proceeds to the area
with the most promising frontiers. Since he has the same knowledge as the
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Fig. 5. Graphs showing mean and standard deviation values obtained from the simu-
lation runs using role-based exploration, and our approach using target ratios of 0.95,
0.9, 0.75, 0.5 and 0.3.
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other agent had at the time of meeting, he will likely go to the same ”promis-
ing” frontier as the other agent did, meeting him - or another agent relaying
for him and returning to base - on the way.

The cycle above results in the emergent behaviour of chains of relays being
formed as they are needed to keep delivering information to the base station at
a frequency that is appropriate for the target ratio set up by the operator.

5 Conclusions

We have shown a simple, but effective way of specifying the desired team be-
haviour by means of setting a single numeric parameter, the target ratio of base
station utility to total agent utility. We have presented an implementation of a
distributed exploration strategy that takes the target ratio into account and ad-
justs the behaviour of the team accordingly, and we have shown that it performs
competitively with role-based exploration while offering additional flexibility. We
have also shown that the gain in the total speed of exploration that we get when
we reduce the target ratio seems to get a lot smaller than the corresponding
increase in the cost (reduced rate of base station updates) as the target ratio
gets closer to 0 - which may be useful when deciding which target ratio should
be used for any particular situation.

Some of the extensions we would like to explore include having better es-
timates by agents of what the total agent knowledge is and how it is going to
increase in the future, as well as what the current base station knowledge is. We
are also interested in exploring the effects of having a low-bandwidth commu-
nication link between all agents, such as VHF radio, that would allow them to
communicate their positions and their estimates of how much new information
they possess.
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