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Abstract—The expected rise of electric vehicles will lead to 
significant additional demand on low voltage (LV) distribution 
systems.  Uncontrolled charging could lead to problems such as 
thermal overload of transformers and lines, voltage deviation, 
harmonics, and phase unbalance. We propose two electric 
vehicle charging algorithms, one centralized and one 
distributed, and compare their performance in simulations that 
use real vehicle data, on a model based on a real LV network in 
northern Melbourne, Australia.  Our experiments confirm that 
the locations of the vehicles in the network are an important 
factor in predicting adverse effects.  Furthermore, our 
coordinated charging solutions allow penetrations of electric 
vehicles approximately 3-6 times higher than is possible using 
uncoordinated charging, in our network. 

Index Terms—Centralized control, Distributed control, Electric 
vehicles, Power system planning, Smart grids 

I. INTRODUCTION 
Governments and manufacturers around the world are 

promoting electric vehicles (EVs) as a green alternative to 
conventional fossil fuel based transport.  Every major 
automaker has released a fully or partially electric vehicle 
model, and several countries have seen the rise of new players 
in electricity markets that cater to the growing demand of 
EVs. An emerging model is that of an aggregator providing 
electric vehicle charging across home and public charge spots 
in return for a monthly fee [1]. 

Electric vehicles, when charging, act as significant loads in 
the grid.  Today’s vehicles typically draw between 3-4 kW 
(roughly equivalent to the demand of a full household), and 
upcoming models are expected to be capable of drawing twice 
that, or more.  The resulting impact on low voltage 
distribution systems can be significant, with potential 
problems including transformer or line overload [2], 
harmonics [3], voltage drop [4], and phase unbalance [5]. 

The time of day at which vehicles are charged has a strong 
influence on how they affect the grid, and it is in the interest 
of the entity responsible for charging (whether aggregator, 
distributor, or other) to ensure that negative effects of charging 

are minimal.  To this end, several charging algorithms have 
been proposed and examined. 

A significant difference between uncontrolled and 
controlled charging is demonstrated in [4].  In a 
neighbourhood of approximately 8,500 households, an 
additional load of only 10% EVs is found to be sustainable 
before voltages drop below acceptable levels.  Using a 
controlled charging algorithm, this rises to 52%.  In [6], 
uncontrolled charging is compared to quadratic and dynamic 
programming methods that aim to minimize power losses and 
voltage deviations.  At EV penetrations of 30%, losses are at 
6% and voltage deviation at 10.3% in the worst case of 
uncontrolled charging.  The coordinated charging method 
reduces these to 5.8% and 9.1%, respectively. Linear 
programming is used in [7] to coordinate charging.  With 
uncontrolled charging, only 21 vehicles could be added to the 
modeled network (16%), whereas the linear programming 
approach allows for over 60 vehicles to be charged (45%) 
without adverse effects on the network. 

This work aims to contribute to the existing work on 
aggregated electric vehicle charging.  We focus on a more 
extensive range of specific constraints in the grid, including 
voltage deviation, cable overload, transformer overload, phase 
unbalance, and power factor.  Real data underpin all of our 
simulations:  our grid model is based on a real neighbourhood 
in northern Melbourne, Australia; our household demand 
model uses data obtained from a distribution transformer 
serving this neighbourhood; our cable impedances are based 
on spec sheets for cables used in this neighbourhood; our 
vehicle demand model uses traffic survey data specific to the 
area this neighbourhood is located in; and our battery model 
uses a charging profile based on a real electric vehicle battery. 

We propose two new charging algorithms.  The first, a 
centralized method, uses only available power as measured at 
the distribution transformer and allots equal shares to all 
connected vehicles.  The second, a distributed method, uses 
local voltage measurements to determine whether the present 
network load is low (in which case the vehicle can be charged) 
or high (in which case the vehicle should not be charged).  We 
compare both of these methods to uncontrolled charging. 

This work has been funded by a Linkage Grant supported by the 
Australian Research Council, Better Place Australia, and Senergy Australia  



II. SIMULATOR 

A. Simulator Loop 
Our simulations were conducted using our in-house 

POSSIM Simulator [9], which provides an interface to 
MATLAB SimPowerSystems for load flow calculations.  
Simulations are conducted in 5-minute intervals, with the 
following steps undertaken at each interval: 

1. Simulate vehicle movement:  update vehicle positions 
(home or away) using travel survey data (Section II C), 
and update battery state-of-charge based on vehicle 
behavior (decrease if driving, increase if charging). 

2. Generate household loads:  according to household 
demand profiles (Section II D), generate a demand for 
each household. 

3. Determine charge rates:  using one of the algorithms 
described in Section III, determine what the rate of 
charge for each connected vehicle should be. 

4. Run load flow:  apply household and vehicle loads, run 
load flow simulation, log all relevant current and voltage 
measurements. 

B. Grid Model and Load Flow 
Since electric vehicle uptake is projected to be much 

greater in urban than in rural settings [8], we chose a typical 
suburban network in northern Melbourne containing 112 
houses as a case study.  An LV grid model was developed in 
MATLAB SimPowerSystems.  Phases and neutral are 
modeled individually, as are piecewise sections of the LV 
backbone and service lines.  All houses are connected single-
phase; an electric vehicle associated with a given house is 
connected in parallel on the same phase as the house. Voltages 
and currents are measured for each phase, and individual 
household voltages are measured at each house.  Houses are 
25m apart on average, having a service line of 15m on 
average.  A diagram of our network is presented in Fig. 1. 

C. Electric Vehicle Demand 
We use private vehicle travel data obtained from the 

Victoria Department of Transport’s extensive travel survey of 
2009.  Reducing the dataset to those records having distances 
less than 160km (our assumed EV range), we are left with 
3907 individual 24-hour travel records for the district that our 
neighbourhood is located in.  For each vehicle and each day in 

our simulations, one of these real travel records is chosen at 
random to determine distances driven (battery discharge) and 
timing of potential charging (when the vehicle is at home).  
Fig. 2. Presents some typical driving profiles.  We assume that 
the vehicles in our simulation behave similar to the Nissan 
Leaf, i.e. a driving range of ~160km and a battery capacity of 
24kWh.  At a 230V, 15A outlet, the Leaf draws up to 3.45kW. 

D. Household Demand 
Demand data obtained from the local distribution 

transformer of our neighbourhood was used to create 24 
household demand profiles: one each for weekdays and 
weekends, for each month of the year.  We consider it 
important to simulate loads individually since there is 
typically much fluctuation in each household’s demand across 
a day, and since individual loads can have a significant 
influence on factors such as voltage drop.  To introduce 
randomness into individual household loads, we assign each 
house a “demand profile”, according to a normal distribution 
(since some houses will be heavier users than others), and we 
further introduce randomness at each simulation interval for 
each household using a Weibull distribution (to prevent 
negative demand).  Doing this we achieve demand profiles 
having high rates of fluctuation, the average of which is still 
closely in line with the demand profile obtained from real 
data.  Fig. 3 presents some typical individual household load 
profiles (thin lines), their average (thick line), and real data 
obtained from the distribution transformer (thick dotted line). 

E. Battery model 
We model EV batteries on a cell-by-cell level using a 

dynamic state-of-charge dependent open-circuit-voltage, 
based on values obtained from a real EV battery cell.  We 
further take into account static internal resistance of the 
battery. Charging then follows a constant-power, constant-
voltage (CP-CV) process, with charging power and voltage 
limits of 3.45kW and 4.2V, respectively. An additional loss 
factor of 10% is applied between charging power and battery 
input power to take into account energy loss in converters, the 
cooling system and monitoring/control systems. 
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Figure 1:  Network model of a real neighbourhood in 

northern Melbourne containing 112 houses. 
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Figure 2:  Typical vehicle travel profiles 

0 4 8 12 16 20 24
0

0.5

1

1.5

2

2.5

3

3.5

4

Time of Day

D
em

an
d 

(k
W

)

Household Demand profiles

 

 
  Simulated Demand (Avg)
  Distribution Transformer Data (Avg)

 
Figure 3:  Household demand profiles 



III. CHARGING ALGORITHMS 
We compare three charging algorithms as follows: 

A. Uncontrolled 
In the uncontrolled algorithm, vehicles start charging as 

soon as they return home, and charge at their maximum rate 
(3.45kW) until their battery state-of-charge reaches 100%. 

B. Equal Share (Centralised) 
Our centralized algorithm, which we call “Equal Share”, is 

designed with distribution transformer limitations in mind.  It 
makes the following assumptions:  (1) Vehicles can charge at 
variable rates, (2) these rates can be chosen centrally by the 
charging aggregator, and (3) the aggregator has access to real-
time demand data at the distribution transformer.  The charge 
rates are then chosen as follows:  first, the total available 
charging capacity, as measured at the distribution transformer, 
is determined (transformer capacity minus household 
demand).  Second, the number of vehicles requiring charge is 
determined.  Third, each of these vehicles is allotted an equal 
share of available charging capacity.  For example, given a 
transformer having capacity 200kW, existing base load 
demand of 150kW, and 50 connected vehicles, each vehicle 
would be assigned a charge rate of 1kW. 

C. Voltage Adaptive (Distributed) 
Our “Voltage Adaptive” (distributed) algorithm is partly 

inspired by IBM India’s distributed load control “n-Plug” 
[10], which uses local voltage and frequency measurements to 
avoid peak load periods when making load scheduling 
decisions.  In our charging method, each residential charger 
makes its own decision at each simulation interval on whether 
to schedule the associated EV.  The decision is made 
according to a probability based on two factors: 

State-of-charge (SOC):  vehicles having a lower SOC 
should have a higher chance of charging than vehicles with a 
higher SOC.  Let Xi represent the point of connection of 
individual vehicles, each having state of charge S(Xi).  The 
SOC-based probability C(Xi) of the vehicle at connection point 
Xi charging is given by: 

Voltage at connection:  voltage as measured at a vehicle’s 
point of connection is helpful in determining whether the local 
network is experiencing a high load.  During peak periods, 
higher current through the feeder will result in greater losses 
along the line, and lower voltages.  At lowest (“valley”) load 
levels, each house j has a voltage Vj

high; we use this for 
calibration, and to introduce fairness into probability 
calculations.  Let the voltage during a given simulation 
interval at point of connection Xi be V(Xi).  The probability 
L(Xi) of the vehicle at connection point Xi charging due to 
local voltage measurement is given by: 

 
where Vmin is the minimum voltage threshold allowed.  We 
used Vmin = 218V in our simulations, since our local 
distribution code limits drops to 216V. 

We combine these two factors to determine a single 
probability P(Xi) that the vehicle connected at point Xi will 
charge in the next interval: 

The reasoning behind this is as follows: if the local voltage 
measurement is already below the allowed threshold Vmin, then 
the load should definitely not be scheduled.  If it is above the 
threshold, then SOC and present network load should 
contribute equally to the probability of the load being 
scheduled.  If Random(0,1) < P(Xi), then the charger 
schedules its load, and vehicle Vi charges to completion.   

Fig. 4 shows the values for P(Xi), given voltages (x-axis) 
and vehicle SOC (y-axis).  For example, if voltage is high and 
vehicle SOC low, then the probability of charging will be very 
high.  If vehicle SOC is at 50%, and there is a medium load on 
the network, then the probability of charging is only about 
70%.  Finally, if the vehicle SOC is high, and the present 
demand on the grid is high (i.e., low voltage), then the chance 
of the vehicle charging is very low. 

An important consideration when using a probability-
based scheduler is the simulation interval size.  For example, 
using the probability surface of Fig. 4 and assuming SOC of 
90% and voltage of 220V, the probability of charging would 
only be 14.6%.  However, over the course of half an hour, 
sampling in 5-minute intervals, there are 6 repeated trials.  
This raises the percentage of the load being scheduled at some 
point in this half-hour period to 1 - (1-0.146)6 = 61.2%, in 
other words quite high.  Thus it is important to scale the 
probability for the sample period down so that it corresponds 
to the desired probability of scheduling a load within a longer 
period of time.  This can be done using the following formula: 

where Pint and Tint are the probability and time of the sampling 
period, and Pfull and Tfull are the probability and time of the 
desired scheduling period. 
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Figure 4:  Probability surface for distributed charging algorithm. 
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IV. RESULTS  
The position in the network at which vehicles are added 

has a significant influence on system reliability.  To examine 
this in more detail, we chose to run each charging algorithm, 
at electric vehicle penetrations of 0, 5, 10, … , 40%, for each 
of three different vehicle assignments.  The vehicle 
assignments are as follows: 

A: Most vehicles are located close to the transformer. 

B: Vehicles are spread fairly evenly throughout the network. 

C: Most vehicles are located far away from the transformer, at 
the far ends of the network. 

Fig. 1 shows these assignments for EV penetrations of 10%: 
full blue circles correspond to assignment A; dashed red 
circles correspond to assignment B; spotted green circles 
correspond to assignment C. 

Each run involved a simulation of the network for 36 
hours, from noon on one day until midnight of the next.  The 
first 12 hours were used to initialize battery states of charge to 
realistic values; the final 24 hours were used to analyze impact 
of charging algorithms on the network over the course of a full 
day.  All runs used demand profiles typical of a weekday in 
July, the month of highest demand in Melbourne. 

We classified runs as “failures” if any of the following 
criteria were met: 

1. Voltage at any household falling outside of distribution 
code requirements (at least 216 V) 

2. Phase currents exceeding the ratings of our modeled 
backbone cable (480 A) 

3. The transformer being loaded at greater than 150% of its 
nominal capacity (i.e. greater than 300kW) 

4. The transformer being loaded at greater than 100% of its 
nominal capacity (200kW) for 12 consecutive hours 

5. Voltage unbalance exceeding distribution code 
requirements (2%) 

6. Power factor on any phase dropping below distribution 
code requirements (0.8) 
Table 1 presents a complete summary of all runs.  Green 

checkmarks indicate successful runs; red crosses indicate 
failures.  Subscripts indicate which of the criteria above were 
the reasons for failure.  Interestingly, no runs failed due to 
voltage unbalance or low power factor. 

Further results from some individual runs are presented in 
Figs. 5-7.  Figs. 5a, 5b, 5c present demand data, individual 
household voltages, and battery states of charge, respectively,  
for the uncontrolled algorithm applied to the run involving an 
EV penetration of 40% and vehicle assignment C.  Figs. 6 and 
7 present the same data for the equivalent runs for the Equal 
Share and Voltage Adaptive charging algorithms, respectively. 

Clearly, location of electric vehicles has a significant 
impact.  Using vehicle assignment A, uncontrolled charging is 
sustainable at penetrations up to 20%, whereas vehicle 
assignment C does not even allow 5%. 

Uncontrolled charging adds to peak demand at the worst 
possible time, and fails early as a result.  Both the Equal Share 
and Voltage Adaptive algorithms outperform uncontrolled 
charging, with the Equal Share algorithm having success at 
penetrations as high as 40%.  The Equal Share algorithm 
never leads to transformer or cable overload, in line with its 
original design motivation.  The Voltage Adaptive algorithm 
does not fail due to voltage drop until 25% EV penetration, 
also in line with its original motivation.   

It must be noted that there is a tradeoff involved with these 
performances:  the Equal Share and Voltage Adaptive 
algorithms are slower to charge the batteries (as Figs. 5c, 6c, 
and 7c show). Using the Equal Share algorithm no charge is 
provided at all until peak demand period is well and truly 
over, and even then the charge rates can be low; using the 
Voltage Adaptive method, vehicles must sometimes wait a 
long time (several hours in some cases) until charging is 
initiated.  However, all vehicles reach an SOC of 100% 
overnight in all cases. 

V. CONCLUSION AND FUTURE WORK 
Both centralized and distributed methods can offer 

significant advantages over uncontrolled charging.  In our 
network, our distributed method allowed for approximately 3-
4 times as many vehicles to be connected without network 
failure; our centralized method allowed for approximately 3-6 
times as many vehicles to be connected. The location of 
vehicles in the network has a significant influence; when 
vehicles are connected near the ends of the network, there is a 
significantly increased risk of voltage drop.   

Other distribution networks may suffer from these 
problems in a different order and at different thresholds, since 
the criteria for failure are highly dependent on the topology 
and size of the network.  Nevertheless, these results contribute 
to the growing body of results that if electric vehicles reach 
higher levels of penetration, then either significant network 
upgrades, or smart controlled charging algorithms (or both) 
will be essential to maintain system reliability. 

These experiments have provided some insight into the 
boundaries of what can be achieved with improved charging 
methods; our next efforts will be dedicated to finding a 
charging solution that is optimal, while still taking all of the 
specific grid constraints into account. 

Charging 
Algorithm 

Vehicle 
Assignment 

Electric Vehicle Penetration, % 

0 5 10 15 20 25 30 35 40 

Uncontrolled 

A ✓ ✓ ✓ ✓ ✓ ✗12 ✗123 ✗123 ✗1234 

B ✓ ✓ ✗123 ✗123 ✗123 ✗123 ✗123 ✗123 ✗1234 

C ✓ ✗1 ✗12 ✗123 ✗123 ✗123 ✗123 ✗1234 ✗123 

Equal Share 
(Centralized) 

A ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗1 

B ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗1 ✗1 

C ✓ ✓ ✗1 ✗1 ✓ ✓ ✗1 ✗1 ✓ 

Voltage 
Adaptive 

(Distributed) 

A ✓ ✓ ✓ ✓ ✓ ✓ ✗12 ✗3 ✗2 

B ✓ ✓ ✓ ✓ ✗2 ✓ ✗123 ✗123 ✗23 

C ✓ ✓ ✓ ✗2 ✗2 ✗12 ✗123 ✗123 ✗23  
Table 1:  Full summary of all runs 
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c.  Batteries’ states of charge 

Figure 5:  Results for an individual run of uncontrolled charging, 40% EV penetration, vehicle assignment C. 

0 4 8 12 16 20 24
0

0.5

1

1.5

2

2.5

3

3.5
x 105

Time of Day

D
em

an
d 

(k
W

)

Total Demand

 

 
Electric Vehicle Demand
Household Demand

 
a.  Household and vehicle demand 

0 4 8 12 16 20 24
210

215

220

225

230

235

240

245

250

Time of Day

Vo
lta

ge
 (V

)

Household Voltage

 

 
Average
Farthest House

 
b.  Individual household voltage 

0 4 8 12 16 20 24
30

40

50

60

70

80

90

100

Time of Day

Ba
tte

ry
 S

O
C

 (%
)

EV Batteries: State of Charge

 
c.  Batteries’ states of charge 

Figure 6:  Results for an individual run of Equal Share (centralized) charging, 40% EV penetration, vehicle assignment C. 
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c.  Batteries’ states of charge 

Figure 7:  Results for an individual run of Voltage Adaptive (distributed) charging, 40% EV penetration, vehicle assignment C. 


