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Abstract

The advent of robotic technologies means that teams of robots can be
used for an ever wider range of tasks, such as exploration of unknown ter-
rain, search and rescue in disaster scenarios, and inspection of hazardous
areas. In many such applications, partial or full autonomy is a desirable
characteristic for the robots, since this can reduce the load on human oper-
ators and improve the speed and quality of team coordination. However,
in many scenarios the environments of interest may contain significant
communication challenges due to their size or complexity, introducing the
need for robust methods for communication-limited exploration by multi-

ple robots.

This thesis proposes “Role-Based Exploration”, a novel exploration algo-
rithm for multi-robot systems that aims to efficiently gather information
obtained by all members of the team in a single location. In Role-Based
Exploration, some of the robots in the team explore the environment while
others act as mobile relays, ferrying information back and forth within the
team. By imposing a team hierarchy, choosing clever locations for robots
to meet, and applying some simple rules that allow robots to exchange
places within this hierarchy, a robust exploration system emerges that
reactively adjusts to communication availability and to the shape of the

environment.

Role-Based Exploration demonstrates several advantages over other meth-
ods, particularly as communication becomes less reliable. New informa-
tion obtained by the team is brought to a single location quickly and in
regular intervals, team members share information well and often, and
the full team effort can be easily monitored and controlled. The approach
has been implemented and compared to competing algorithms both in

simulation, and on a team of Pioneer robots.
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Chapter 1

Introduction

1.1 Background

Historically robots have been limited to industry, but as technologies mature, robots
are being used more and more for other purposes. These include exploration of
unknown or remote terrain (such as the robotic rovers on Mars [107]), search and
rescue in disaster zones (such as the robots used to find human remains after the
collapse of the World Trade Centre in September 2001 [23]), inspection of hazardous
areas (such as monitoring of nuclear waste facilities [143], or bomb disposal [154]),
in urban settings (e.g. for surveillance [64]), and even in the home (for example, the
popular Roomba vacuum cleaner [46]). In particular the miniaturisation of hardware
means that now teams of small robots may be used for many tasks.

Today, most robots are controlled remotely by human operators, and control of
a robot typically requires the operator’s full concentration. However, the amount of
incoming information can be overwhelming, there may be many other factors compet-
ing for the operator’s attention, and in the case of very remote environments, control
delay can be significant. As a result, there is much incentive to offload some of the

work to the robots. In other words, partial or full autonomy is a desirable capability



for robots in many scenarios.

For a team of robots to successfully explore autonomously, robust performance of
a number of functionalities is necessary: the robots must be able to navigate without
being hindered by obstacles; they must keep track of where they are and maintain
information about the environment; and they must communicate with one another

in order to coordinate their actions and improve team performance.

1.2 Motivation

In many applications, however, communication is likely to be unreliable. Environ-
ments may extend beyond the team’s communication range, or they may be complex
and contain significant interference, and often there is no existing communication
infrastructure. Thus, communication links between members of the team are often
liable to drop-out or failure.

While there has been much work on multi-robot exploration and mapping, most
existing approaches either assume perfect communication, or apply a strategy that
aims to keep team members within range of one another. In large and complicated
environments, this means that some parts of the environment may never be reached.

The main aim of this thesis is to provide an early approach towards autonomous
exploration of previously unknown environments, even beyond team communication
range limits. In short, the motivation of this thesis was to investigate the following
two questions: How can a team of robots be coordinated to explore a previously
unknown and communication-limited environment as efficiently as possible; and how
can new information obtained by this team be gathered at a single location as quickly

and as reliably as possible?



1.3 Approach

To solve this problem, a novel exploration algorithm for teams of robots is proposed:
Role-Based Ezploration. In Role-Based Exploration, some of the team members ex-
plore the environment, while others act as mobile relays, ferrying information back
and forth between exploring robots and a central “BaseStation”. By maintaining a
team hierarchy, choosing clever locations for robots to meet, and applying some simple
rules that allow robots to exchange places within the hierarchy, a robust exploration
system emerges that reactively adjusts to communication availability and the shape
of the environment. Information is shared well throughout the team, and the regular
return of information updates to the BaseStation means that the full team effort can

be easily monitored and controlled from a single location.

1.4 Progression of Research

Early versions of Role-Based Exploration were implemented for use by the “Ams-
terdam Oxford Joint Rescue Forces” [45], a joint team between the Universities of
Amsterdam and Oxford that competes in the Virtual Robots rescue competition,
which forms one of the events endorsed by the RoboCup initiative [6, 109]. The
Virtual Robots competition uses a 3D simulator, USARSim [153], and human com-
petitors have to direct simulated robots through various virtual disaster scenarios
that have been created by the competition organisers.

USARSim is a useful and widely used simulator, but certain characteristics (such
as the time it takes to build new environments, and the fact that communication
is simulated by a separate application) mean that for extensive simulations it can
be time-consuming to use. For the purposes of this thesis a new simulation tool,
the Multi-Robot Exploration Simulator (MRESim), was developed. This simulator

has been tailored specifically for quick and simple comparison of various multi-robot



exploration algorithms, and is described in greater detail in Appendix A.

The behaviour of Role-Based Exploration is demonstrated initially in MRESim,
where it is compared to several competing approaches. Its performance relative to
these other approaches is examined for each of four parameters: sensor range; com-
munication range; number of robots in the team; and type of environment. Several
further tests are conducted in simulation that emulate, to some degree, scenarios that
might be found in reality.

To examine Role-Based Exploration in reality, it is also demonstrated on a team of
Pioneer robots as part of a series of experiments that were undertaken at the Univer-
sity of Seville under the auspices of the CONET project!. Its performance on a real
multi-robot system is compared to other methods first within a controlled, purpose-
built environment; and subsequently in an uncontrolled, fully realistic domain as the

robots explore the halls of a large building.

1.5 Thesis Organisation

Figure 1.1 demonstrates how this thesis fits into contemporary robotics research. The
literature review (Chapter 2) has been divided into two parts: the first provides a brief
overview of some of the applications the research in this thesis is most relevant to;
and the second describes in greater depth the work that has been done in multi-robot
exploration elsewhere.

In Chapter 3 the exact nature of the problem is defined, including the assumptions
that are made, the exact goals of the research, and the performance metrics that are
used to compare competing approaches.

Chapter 4 describes the main contribution of this thesis, Role-Based Exploration,

and details two improvements that were made over the course of the research which

LCONET: Cooperating Objects Network of Excellence (INFSO-ICT-224053) funded by the Eu-
ropean Commission under ICT, Framework 7.



led to gains in exploration speed and connectivity of the team.

The performance of Role-Based Exploration in simulation is demonstrated in
Chapter 5, while the implementation of Role-Based Exploration on a real multi-robot
system is described in Chapter 6.

Finally, Chapter 7 discusses various characteristics of the approach and examines

in greater detail its strengths and weaknesses, before Chapter 8 concludes the thesis.
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Table 1.1: Non-comprehensive lists of the applications and capabilities that attract
much research today. This thesis deals primarily with those robot capabilities high-
lighted in blue on the right, and the resulting multi-robot exploration approach is
most relevant to those applications highlighted in blue on the left.



Chapter 2

Literature Review

The literature review has been divided into two halves.

In the first, four robotics application domains are presented to which the research
discussed in this thesis is most relevant: Reconnaissance & Surveillance; Inspection
of Hazardous Areas; Search and Rescue; and Remote Exploration. For each of these,
a brief overview of the state of the art is presented along with a couple of selected
examples of recent research, followed by a discussion of the main challenges involved.

In the second half, the specific task of multi-robot exploration is examined in
greater detail. This part of the literature review is organised by the classes of methods
that have been attempted, and several recent examples are provided for each. Finally,

several of the approaches most relevant to this thesis are compared in greater detail.



2.1 Relevant Applications

2.1.1 Why Robots?

The potential advantages of robots over humans for certain tasks have been ex-

pounded by roboticists for many years now:

e Robots can be more mobile. Robots can be built to fit into small places or to

reach areas otherwise inaccessible to humans or search dogs.
e Robots are expendable.

e Robots can have greater sensual perception. Depending on the sensor payload,
robots can learn considerably more about their environment than a human could

(e.g. using chemical or infrared sensors, or computer vision techniques).

e Robots can be more robust. They can be designed to cope with heat, radiation
and toxic chemicals, and can operate in many environments too dangerous for

humans.

e Robots can be stronger. Depending on the task and environment, robots can

be designed to exert greater force or move faster than humans could.

e Robots can be very intelligent. In certain situations robots can make au-

tonomous decisions faster, more efficiently and more intelligently than humans[19].

Figure 2.1: Robots are already being used for surveillance (left), inspection of haz-
ardous environments (centre), and planetary exploration (right)



2.1.2 Reconnaissance and Surveillance

Reconnaissance and surveillance are useful not just for the military and security forces,
but in various civilian applications as well. Possible scenarios that are commonly
cited include hostage situations, urban conflicts, intruder detection, and tracking
[124, 89, 8, 66]. Reconnaissance involves the use of robots to find new information
about environments of interest that are too dangerous, large, or remote for humans to
do the job. Surveillance involves monitoring an environment in order to learn about
changes or movement within.

An early multi-robot system developed by Rybski et al. uses larger “Ranger”
robots to transport a number of smaller “Scout” robots [124]. The ranger can cover
large distances to reach a location of interest, and then launch the scouts into further
territory, e.g. through windows of a building. The scouts carry a wide array of sensors
and can both roll and jump, returning information to the ranger for processing.

In a similar approach, a suite of “ThrowBots” have been described by Barnes, Ev-
erett and Rudakevych [8]. Developed primarily for military purposes, the ThrowBots
can be tossed down a corridor, up a stairwell, or into a window, and thereafter can be
remotely operated and provide camera feedback on the interior. Several models have
been tested, including a 4-wheeled platform and a 6-wheeled platform, and future
development of a track and flipper based model is planned.

In an unprecedented study, Howard, Parker, and Sukhatme deployed 80 robots
into an unexplored building to map it, detect and track intruders, and transmit this
knowledge to a remote operator [66]. The team is divided into a small number of
“highly capable” robots and a large number of “simple” robots. A follow-the-leader
paradigm is used to deploy the team into the environment, and an acoustic sensor
network deployed by the team detects targets with 100% accuracy.

Recently, unmanned aerial vehicles (UAVs) have received more and more atten-

tion as tools for surveillance and reconnaissance. UAVs have already been used by



police for crowd control and to make arrests [69]. Research is also being conducted
into multi-UAV target tracking — for example the SUAAVE (Sensing, Unmanned,
Autonomous Aerial VEhicles) consortium, of which Oxford University Computing
Laboratory is a member, focusses on the use of UAV teams to search for a given
target, such as a lost hiker in open countryside [139].

The main challenges of reconnaissance and surveillance depend on the task at
hand, and the platforms used. However, typically the challenges involve accurate
sensing (which can depend on localisation, mapping, and possibly computer vision),
robust design and navigation (particularly where unorthodox entry such as being
thrown is involved), and strong communication (since information that doesn’t reach
human responders is useless). When teams of robots are involved, autonomy becomes
more and more important and communication and coordination of the team must be

managed carefully.

2.1.3 Inspection of Hazardous Areas

There is much overlap between the reconnaissance task and inspection of hazardous
areas. However, whereas targets in the previous section were typically human (in-
truders, criminals), this section focusses more on environmental hazards. There has
been much work in this area, as robots have already been used for landmine detection,
explosive ordnance disposal, fire-fighting, and inspection of nuclear power plants and
waste storage pools [137, 146, 12, 102], to name but a few. The typical task for robots
in such scenarios is to inspect, and often act on, an environment that is too dangerous
or toxic for humans.

The use of robots in hazardous environments has been discussed for decades.
Already in 1992, Stone and Edmonds describe the development of a robot that can
identify hazardous material (such as toxic canisters) and mitigate instances involving

chemical releases [137]. The robot can further navigate to locations of interest and

10



unlock and open doors when necessary.

Robots have also been used extensively for explosive ordnance disposal, de-mining
and detection of landmines. For example, Tojo et al. have developed a wheeled buggy
that has high mobility and can be taken to places that are hard for other de-mining
equipment to reach [146]. The buggy has a special field arm mounted that is counter
balanced and allows detection of mines from a distance, even on sloping terrain.

Bengel et al. have demonstrated the potential use of a mobile robot on an offshore
oil platform [12]. The robot can be used for a variety of remote inspection tasks,
such as monitoring of gauges and meters, inspection of valves, and inspection of
leakage. Given that offshore environments can be dangerous and (in severe weather)
inaccessible, the authors argue that there is great scope for offloading work onto
robots and thereby improving operational efficiency and safety.

Nawaz and colleagues are working on a robotic system for monitoring of nuclear
waste storage pools [102]. Such environments can contain significant challenges given
that the environment is quite cluttered, making localisation difficult. Nevertheless, a
successful system would provide helpful information about the state of the spent fuel
rods, and the system as a whole is applicable to other domains, such as inspection of
settling ponds of chemical plants and inspection of sewage treatment facilities.

Recently the world has become acutely aware of the potential of robots in haz-
ardous zones due to the March 2011 Tohoku Earthquake, and the ensuing collapse
of the Fukushima nuclear reactors. Japan came under criticism for being the world’s
most advanced robotics nation, yet not having a single robot available for use at
the Fukushima plant [62]'. Tt seems likely that there will be increased interest and
spending on robots for such scenarios in the near future.

Summing up, robots used for inspection of hazardous areas typically need to be

robust and well designed for their specific task. Autonomy is a desirable quality,

lalthough, as Dr. Robin Murphy points out, this is an unfair criticism since most other nations
would not be prepared for a catastrophe of that scale either [98]
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particularly for mundane tasks, navigation, and obstacle avoidance. The return of
information to human responders is paramount, so communication is of great impor-

tance.

2.1.4 Search and Rescue

Search and rescue robots are used to aid human responders in the search for victims
of disasters. Such disasters could include buildings collapsing after an earthquake,
mines becoming inaccessible after a landslide, or urban disaster zones after terrorist
attacks. The field of rescue robotics contains a rich set of challenges [84, 132]. Tasks
can include search, reconnaissance, mapping, rubble removal, structural inspection
and communication relay. Environments are typically unknown and complex and
communication is typically poor and unpredictable.

Rescue robotics has now attracted research on an international scale, but the ear-
liest efforts were made in Japan and the United States. In Japan, the response to the
Great Hanshin Earthquake of 1995 included provisions for the “Development of Ad-
vanced Robots and Information Systems for Disaster Response” [140, 88]. The project
led to the creation of the International Rescue Systems Institute, and widespread de-
velopment of robotic platforms for search and rescue (Fig. 2.2).

In the United States, the development of rescue robots was kick-started by the
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Figure 2.2: Robots developed in Japan for search and rescue
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(a) Inuktun Microtracs (b) Inuktun Minitracs (c) Foster-Miller SOLEM

Figure 2.3: Some of the robot models taken to the site of the 2001 World Trade
Centre collapse by CRASAR. Images extracted from [93] and used with permission.

Oklahoma City bombing of 1995, which occurred only four months after the Great
Hanshin Earthquake [32, 126]. Robots used at the disaster site proved to be too large,
heavy, slow and clumsy to deal with anything other than bomb disposal. In response,
the University of South Florida’s CRASAR (Centre for Robot Assisted Search and
Rescue) Institute was created, which is now considered a world leader in the field of
rescue robotics.

The first opportunity for CRASAR to deploy its robots in a real urban search and
rescue situation (and indeed, the first use of rescue robots ever) came on 11 September
2001 when the World Trade Centre collapsed in New York City [93, 23]. A variety of
robots were deployed in eight separate drops (see Fig. 2.3). While the robots did not
find surviving victims they did help with locating ten bodies. The exercise further
provided valuable insight into the skills required by both robots and humans, and
pointed out shortcomings that require most urgent attention.

There has also been much literature recently on the use of teams of unmanned
aerial vehicles (UAVs) for the creation of an adhoc communication network infras-
tructure [122, 59]. UAVs are fast, quick to deploy, and can benefit from line-of-sight
communication. Such networks could be used not only for coordination of a robot
team, but also for all rescue responders to communicate and coordinate their efforts.

An overview of some recent rescue robot deployments at real disaster scenarios is

presented in Table 2.1.
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Rescue robots have been used at a variety of sites, in various different ways. The following
is a non-comprehensive list of recent deployments:

September 2001

October 2004

January 2005

September 2005

August 2007

March 2009

January 2010

October 2010

November 2010

March 2011

New York City: Following terrorist attacks, the World Trade Centre
collapses. Ground robots are used to enter voids in the wreckage to
search for survivors. No survivors are found, but ten bodies and a
number of entry routes are located [23].

Niigata, Japan: After the Niigata Chuetsu Earthquake (magnitude
6.9), the Souryo snake robot is tested in the resulting wreckage [132].

La Conchita, US: A mudslide destroys 18 homes and kills 10 residents.
Inuktun VGTV Extreme robots are deployed in two buildings but fail
due to the density of the material in one case and the difficulty of
mobility in the other [101].

New Orleans, US: In the aftermath of hurricane Katrina, small camera-
equipped ground based robots and helicopters are used to examine
structures at risk of collapse [71, 58].

Utah, US: A mine at Crandall Canyon collapses, trapping six miners.
A customised Inuktun robot is lowered 430 metres through a bore hole
to inspect the condition of the mine [100].

Cologne, Germany: Following poor underground tunnel work a mod-
ern multi-storey building collapses and two people are trapped. Rescue
robots are taken to the site but the voids are too small even for the
smallest robots [83].

Haiti: Following a major earthquake, Global Hawk UAVs (Unmanned
Aerial Vehicles) are used to provide aerial imagery in support of hu-
manitarian efforts on the ground [116].

Croatia: An underwater robot is used to search for remains of balloon-
ists suspected to have crashed in the ocean [91].

Pike River, New Zealand: An explosion in a mine leaves 29 miners
unaccounted for, but there is too much poisonous gas for rescue re-
sponders to enter the mine. Several military robots enter the mine,
taking footage of a dropped helmet [61].

Tohoku, Japan: Following the greatest earthquake in Japan’s recent
history, a number of coastal towns are washed away by a tsunami and
a nuclear power station collapses. Robots are used to find victims
underwater, and American “PackBots” developed by iRobot are used
to detect radiation levels at the power station [99, 57].

Table 2.1: Recent rescue robot deployments
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Figure 2.4: Devastation resulting from the Great Hanshin Earthquake (left) and a
void into which robots were dropped at the scene of the World Trade Centre collapse
(right). Finding victims in such environments is extremely difficult.

The rescue robotics task is clearly a very difficult one. Rescue robots need to be
small so that they can be carried into complex sites. At the same time, they need
to be highly mobile to traverse a variety of obstacles, since rescue environments are
typically complex (Fig. 2.4). A variety of prototype platforms have been developed
for this purpose, from snake-like robots to tracked vehicles with flippers (Fig. 2.5).

Further desirable features include advanced image processing systems, tether man-
agement systems, wireless relay systems, localisation and mapping, and assisted nav-

igation [93]. In other words, a degree of autonomy is of great interest.

2.1.5 Remote Exploration

A final application domain worth discussing is that of Remote Exploration: using
robots to explore environments that are too far or too difficult for humans to reach.

Perhaps today’s most famous robots are the robotic rovers that have been used
with great success on Mars. At latest reading, the rover Spirit has traversed more
than 7.7km, while Opportunity has traversed more than 29.3km of terrain [108].
Since sending humans to other planets or asteroids is enormously expensive and risky,

the great value of space robotics has been recognised, most recently in the Obama
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Figure 2.5: Recent rescue robot designs. The Kenaf robot (left), developed in part
at the University of Tohoku, Japan, has two main tracks and four tracked “flippers”
which allow it to climb stairs and traverse difficult terrain. At Prof. Matsuno’s
laboratory in Osaka University, there is a strong focus on snake-like robots that are
becoming ever smaller and more mobile (right).

administration’s new space budget [106, 25], and several future rover missions are in
planning stages. The goals of Martian exploration are to determine whether life ever
arose on Mars, characterise the climate of Mars, characterise the geology of Mars,
and prepare for human exploration [107].

Remote environments exist on Earth as well. Less is known about the deep oceans
than about the surface of the moon, and autonomous underwater vehicles (AUVs)
have been used to examine underwater environments already for decades [159]. The
purpose of such exploration extends beyond simple information gathering, being use-
ful also for monitoring health of marine environments, dispersion of pollutants, and
surveillance of ports or underwater engineering projects. In one recent example, a
team of two different robots and a number of sensor network modules were deployed
underwater, demonstrating docking, communication, and coupled motion over a large
number of experiments [40]. Robots were also used with mixed success to fix a leak
in an oil well in the disaster on one of BP’s oil rigs in April 2010 [54].

Other remote environments that can be explored by robots are caves and mines.

Mines in particular can contain gases dangerous to humans or may be at risk of
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collapse. Several robots have already been used in mines [143, 95| and the potential
use of robots for volumetric mapping has been demonstrated [145].

The main challenges in the domain of remote exploration are autonomy, naviga-
tion, mapping, and information relay. As with the other domains discussed previously,
when teams of robots are used, coordination and communication management become

more and more important.

2.1.6 Common Requirements

Clearly there is much overlap between all of the above application domains, and they

share many common requirements, including the following:

Information gathered by the robots must often be relayed to human responders

or to a base station where it can be analysed.

e Communication is not ubiquitous and can drop out or be unpredictable.

Autonomy of the robots can help take the load off human operators.

When multiple robots are used, they need to be coordinated in order to prevent

redundant task completion.

The remainder of this thesis deals with exploration algorithms for teams of robots
in communication-limited environments and it is hoped that the methods proposed

are applicable, to some degree, to each of the applications discussed here.
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2.2 Multi-Robot Exploration

While the previous section dealt with robotics applications, this section provides a
literature review of a particular robotics capability: exploration. In particular, it
examines current approaches to the problem of multi-robot exploration, i.e. using
multiple robots to explore an unknown environment. Following a brief history of
the general development of robotic exploration, the review is organised into several
categories that current approaches can be classified by, and multiple examples are
provided for each category. Finally, a handful of approaches most relevant to this

thesis are compared in greater detail.

2.2.1 A Brief History

Robotic exploration has been an active area of research since the beginning of robotics
itself, from the mid-20th century onwards. Early approaches in robotics attempted to
create internal models of the world, but since the mid-1980’s there has been greater fo-
cus on behaviour-based and reactive robotics (see e.g. [15, 7]). The latter approaches
allow robots to adjust with greater speed to complicated and dynamic environments.
In both cases, however, exploration is closely tied to mapping, and in many studies
these two fields are closely intertwined. It is hard for a robot to explore well without
a useful map of its environment, and it is likewise difficult for a robot to map an

environment without effective exploration.

2.2.2 The Advantages of Multiple Robots

Initial efforts in robotic exploration involved only single robots (e.g. [39, 78, 160,
144, 157]). Due in large part to an increased availability and functionality of com-
munication hardware and techniques, interest shifted in the early 1990’s to multi-

robot exploration. While there are disadvantages to using multiple robots (such as
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collisions, interference, and complexity of coordination), numerous advantages to us-
ing a team, instead of single robots, have been identified throughout the literature

20, 117, 4, 110, 37, 55, 163):

e several robots can cover more area in less time than a single robot

e use of multiple robots can lead to improved localisation through mutual obser-

vation

e if properly implemented, a team of robots may be more robust than a single

robot due to redundancy and elimination of single points of failure

e heterogeneity can be of advantage — different robots within the team may be

particularly suitable for certain subtasks of the mission

e multiple robots can exchange sensor information and sense the environment

from multiple viewpoints

e depending on the task, multiple robots may help each other overcome obstacles

or collaborate to manipulate objects in the environment

e it can be easier to build and maintain many simple robots instead of a single

complex robot

Several early studies in multi-robot exploration focused on motion planning and
collision avoidance (for a review see [81], more recent examples include [51, 13]). More
recently, however, the emphasis in multi-robot exploration has been on coordination
and cooperation, which ties this field to distributed artificial intelligence, multi-agent
systems, and networking.

In the remainder of this chapter, only those approaches that involve multiple

robots exploring together are considered.
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2.2.3 Line-of-Sight and Leader-Follower Approaches

The term “line-of-sight” may refer either to visual detection (used in earlier sys-
tems) or wireless line-of-sight, i.e. being within direct communication range. Leader-
follower approaches involve one or multiple robots directly following a lead robot.

In an early approach, Rekleitis, Dudek and Milios propose an exploration al-
gorithm in which one moving robot is observed by two stationary ones, with the
resulting triangle between them considered empty for mapping purposes [117]. While
this behaviour isn’t governed by a central agent, the robots still behave according to
a centrally agreed plan. The robots detect one another using a range sensor. Explo-
ration is faster than it would be with a single robot, but the algorithm requires at
least half of the robots in the team to remain stationary at any point in time, limit-
ing efficiency. In a later study, the same authors propose a system whereby pairs of
robots track the environment and one another, for improved mutual localisation [118].
Robots can detect markers on one another, and only one moves at a time, with the
area between the two considered clear space (much like their previous study). If an
obstacle impedes the line-of-sight, the moving robot backtracks and navigates around
the obstacle. While this approach was a leader in its time, the advent of accurate
laser range scanners means that much better methods for mapping and exploration
now exist.

As part of an investigation into how a team of robots can self-organise for explo-
ration of an environment, Arkin and Diaz propose three different behavioural strate-
gies, all of which maintain line-of-sight communications between robots of the team
[3]. The first, “anchored wander”, involves a single robot acting as a communication
anchor, and the rest of the team entering the environment one at a time. In the
second, “quadrant-biased anchored wander”, a bias is introduced which makes robots
wander towards an area of particular interest. In the third, “informed exploration”,

the team of robots relies upon map knowledge to disperse themselves along an op-
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timal path. This is one of the first studies to explicitly make team connectivity a
priority; however the exploration approach is not highly efficient since many robots
remain stationary during the exploration effort.

Sgorbissa and Arkin assume a dynamic, complex, communication-limited envi-
ronment for their experiments [129]. In their approach, each robot is assigned a set
of locations that must be reached. Robots may help one another using line-of-sight
communication by either sharing goals (e.g. if one robot reaches another’s goal) or by
sharing state (e.g. a robot in trouble is attracted by teammates that are not in trou-
ble). Extensive simulation experiments indicate that a role-defined approach such as
this works, particularly if ‘support robots’ are deployed to assist with the effort.

Powers and Balch use “motor-schemas” (based on those proposed in [7]) to pre-
serve line-of-sight communication between members of a team of robots [115]. Their
approach, “value-based communication preservation”, reactively chooses a direction
in which to move at each time step that is most likely to keep the robot in com-
munication range of the rest of the team. Robots make decisions in a distributed
manner, but stay in contact at all times. Extensive experiments with simulation and
real robots validate the approach.

A practical system is developed by Nguyen et al. [105]. Using short-range, high-
throughput radios, a lead robot enters an environment followed by several “slave”
robots that relay the leader’s sensor input to a remote control / monitoring station.
The slave robots automatically stop when necessary to maintain an ad-hoc network,
and those no longer needed in the network can navigate back to the lead robot to be
redeployed.

A similar approach (already briefly mentioned in section 2.1.2), using the leader-
follower paradigm, has been developed by Howard, Parker and Sukhatme [66]. Eighty
robots are used to map the interior of a building, detect and track intruders, and

transmit all of the acquired information to a remote operator. Using a heterogeneous
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team in an environment built and monitored by external human supervisors, Howard
et al. employ a decentralised frontier-based approach with local occupancy grids and
minimal communication between robots. Although there is much redundancy in the
exploration (as robots explore the same location multiple times), Howard et al.’s large
robot team manages to deploy robots to intended locations with a 60% - 90% success
rate, while detecting intruders with 100% success.

Stump et al. also aim to keep direct contact from a base station to an exploring
robot via multi-hop communication over a set of relay robots [138]. In their approach,
the Fiedler value of the weighted Laplacian describing the communication interactions
of all robots in the system is used to determine movements of the robots such that a
connection is maintained.

The multi-robot routing problem (maintaining multiple robot routers between a
base station and an exploring robot) is further explored from a theoretical perspective
by Tekdas et al. [141]. Algorithms are developed to compute the minimum number
of robots required for either communication with an exploring robot, or for coverage

of the environment.

In summary, line-of-sight and leader-follower approaches are very good at ensuring
reliable communication. Robots are typically deployed in a manner that ensures their
communication links to teammates or a basestation remain strong. Having a fully
connected team enables full, instantaneous control for any human operators.

However, a drawback is that there are limitations to the extent of the environment
that may be explored by such a team. If no robot is allowed to go beyond its parent’s
communication range, there is an inherent limit to the distance that such a team can
be stretched across. In very large or complex environments, some areas may never be
reached by teams using leader-follower or line-of-sight paradigms.

Furthermore, in most leader-follower approaches, only a single robot is exploring

at any given time (while follower or “slave” robots relay information). There may be
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many situations in which it is much more efficient to have multiple robots exploring;
one way to achieve this is by using frontier or utility based methods, as detailed in

the next section.

2.2.4 Frontier and Utility Based Approaches

In frontier and utility based approaches, areas of interest are typically evaluated
based on certain criteria (such as expected information gain, path cost, or likelihood
of communication availability), and assigned a value. For every robot-frontier pair,
there may be a different such value. As a result it is straightforward to assign robots
to different areas of interest, and thereby have multiple robots contributing to the
exploration effort at the same time.

A landmark paper by Yamauchi in 1998 laid the foundations for frontier-based
exploration, with the first definition of “frontiers” [157]. Frontiers are the bound-
aries between explored space and unexplored space, where explored space has been
sensed with a range sensor. Robots can navigate towards unexplored frontiers. When
teams of robots are involved, they share information each time they arrive at a new
frontier, and teammates’ observations are incorporated into each robot’s individually
maintained map.

In an extension of Yamauchi’s frontier-based exploration, Simmons, Burgard and
colleagues propose a method in which robots construct ‘bids” based on estimates of
expected information gain and travel cost to locations of interest (using frontier cells
to calculate each of these values) [134]. The bids are sent to a central agent which
evaluates the bids from the whole team and assigns tasks with the goal of maximising
utility. Individual robots make their own maps and these are joined together by the
central agent. Maximum likelihood estimates are used for both localisation of self
and of objects in the environment, and the approach is fully tested with a team of

three heterogeneous robots. In an extension of the approach, robots no longer send
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bids to a central agent but use a robot-to-frontier assignment algorithm that finds
the best set of frontier-robot pairings for improved exploration [17].

A similar idea is used in a much later version of Burgard et al.’s work [18]. Value
iteration, a dynamic programming algorithm, is used to calculate costs to frontiers,
with penalties applied to narrow passages or obstacles. Frontier cell utilities decrease
when other robots are near to them, which leads to better coordination of the team
to different frontiers. To take communication drop out into account, the robot-to-
frontier assignment is not calculated centrally, but by any connected subgroup of
robots. Extensive experiments both in simulation and with real robots indicate that
the approach works well. A further extension takes into account communication lim-
itations [90]. To decrease bandwidth requirements, robots share only approximations
of their respective maps, using bounding polygons. Targets are assigned to robots
in a distributed manner, and extensive simulation tests reveal that the approach
significantly decreases communication volume while maintaining strong exploration.

Fox et al. also use frontier-based exploration to drive their multi-robot system
[48]. Robots are not assumed to know one another’s locations initially, and may
start from entirely different locations in the environment. Once two robots encounter
one another, they share all sensor data. Since repeated encounters allow the robots
to confirm hypotheses about one another’s locations, they aim to repeatedly ren-
dezvous. Once hypotheses are confirmed, robots form an exploration cluster and
continue exploring together. Robots may either explore new areas or attempt to con-
firm hypotheses — for each of these tasks a utility is calculated that takes into account
frontier size and path cost in the former case, and probability of hypothesis and path
cost in the latter.

Rooker and Birk propose a similar idea in which frontier-based exploration is
applied to multiple robots, but there is no central base station, resulting in “robot

pack” behaviour [119]. A communicative exploration algorithm is applied that keeps

24



the network structure of a group of robots intact, allowing this group to explore
freely. Robot behaviour is guided by a state heuristic that involves rewards for frontier
cells and penalties for locations that are impossible to reach or out of range. The
communication component of this heuristic depends on a list of neighbours (connected
teammates) for each robot, and consequently there is an incentive for each robot in
the group to stay near to other robots in the group while searching out frontiers.
The result is roaming packs of robots, where every member of a pack is connected to
every other member of the same pack. In a later paper the use of an immobile base
station is discussed. This may be used as an anchor for an initial length of time (and
likelihood of communication is factored into frontier utilities), before the robots split
off from the base station to explore in packs [120].

Trade-offs in the calculation of frontier utilities have been explored by Visser and
Slamet [152]. When more value is placed on information gain, robots are more likely
to explore hallways; when more value is placed on reducing path cost, robots are
more likely to explore rooms. In this way the team behaviour can be tuned by a
simple parameter. Visser and Slamet further take communication into account when
calculating the information gain [148]. The degree of a robot’s interest in a particular
frontier is based not only on potential area to be discovered and path cost, but
on likelihood of communication success from that area. Strength of communication
with the base station is measured at regular intervals and stored in a quad-tree.
Signal strength at frontiers can be estimated using a nearest-neighbour technique,
and consequently robots are unlikely to stray far from the team’s communication
range.

Recently, the frontier-based paradigm has evolved to include more specific envi-
ronmental information. Stachniss et al. use semantic place labelling to determine
features of the environment that can be used instead of frontiers [136]. An AdaBoost

algorithm is used to train a classifier to determine whether a given scan belongs to
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a corridor or not. Unknown space is further partitioned into “segments” by Wurm
et al. [155]. Segments are determined using a Voronoi graph of the free space and
determining critical points (typically in doorways). An adaptation of the Hungarian

method [77] is then used to optimally assign robots to segments.

In summary, frontier and utility based approaches typically make it straightfor-
ward to guide robots, either centrally or in a distributed manner, to new, unexplored
areas. Each robot can make a significant contribution to the exploration effort, and
typically exploration proceeds faster than in leader-follower type approaches.

The drawbacks of frontier-based methods are an inability to deal with limited
or failing communication. Robots may choose to explore in opposite directions, and
may soon be out of one another’s range. Thus there can be a risk of redundant
work, as some team members may end up re-exploring rooms that their teammates
have already discovered. Variants of frontier and utility based approaches (such as
[119, 120, 90, 148]) attempt to take this into account by factoring communication into
utilities. However, typically this means that robots either (i) only explore frontiers
that are within range of teammates or a basestation, meaning that some areas are
never explored; or (ii) explore together as a group, staying within range of one another,
but not maintaining a link to any central basestation.

In utility-based approaches, robots are assigned to frontiers by a deterministic
mechanism. This has also been achieved in a different way, however, using market

principle based approaches, as the next section explains.

2.2.5 Market Principle Based Approaches

In recent years, multi-robot systems research has drawn inspiration from economics.
This has been achieved both in terms of competition (when individual robots try to

maximise their personal gain, the team effort as a whole can benefit) or in terms of
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auction-like behaviour (where robots can bid on subtasks based on their desirability).

Dias and Stentz propose a free market architecture for distributed control of a
multi-robot system [37]. In a paper that draws examples from international market
systems, Dias and Stentz suggest that an approach in which individual agents try to
maximise their personal gain will lead to optimal global behaviour. Their agents try
to maximise profit by using revenue and cost functions to determine potential profit
of individual tasks. In a simulation where robots have full prior knowledge of the
environment, robots bid on cities (or points of interest) in the environment to visit.
The emergent cooperative behaviour is an efficient exploration of the environment.

Gerkey and Matari¢ suggest an auction-based task allocation system, MURDOCH,
which is built upon a principled, resource centric, “publish/subscribe” communication
model [53]. Based on the much earlier proposed Contract Net Protocol [33], this
system uses a novel communication protocol in which messages are passed by subject
rather than by intended recipient. The system as a whole is tested in two situations: a
tightly coupled multi-robot physical manipulation task, and a loosely coupled multi-
robot experiment in long-term autonomy. In both cases the approach turns out to
be reactive to changes in the environment, including abrupt failures of robots and
random introduction of new tasks.

Zlot et al. also use a market-based approach to multi-robot exploration that does
not rely on perfect communication, and is still functional with zero communication
(apart from initial deployment) [163]. Robots explore by visiting a set of goal points
in unknown regions. Each robot produces a tour containing several of these points,
and subsequently the tours are refined through continuous inter-robot negotiation.
A revenue function involving information gain determines robots’ profits, as does a
cost associated with the resources required by the individual robot to obtain that
information. The revenue is paid out by a central coordinating agent, but otherwise

the agents act in a completely distributed manner and may be removed or added to the
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effort in a dynamic manner. Experiments with P2DX robots validate the approach,
and both random and quadtree approaches outperform a greedy exploration approach.

Unlike the above approaches, Sheng et al. propose an approach in which there is
no central planning agent [130, 131]. Individual robots’ bids are broadcast to all team
members using a novel communication mechanism that reduces the exchanged data
volume. Bids are placed on frontier cells and evaluated in discretely timed, distributed
auctions. The bids themselves are based on information gain (which is itself a measure
of the current local map, current positions of other sensing-and-mapping robots within
the same subnetwork, and target cell positions of traveling robots within the same
subnetwork) and path cost (calculated using Dijkstra’s shortest distance algorithm
on a connectivity graph derived from the map). Simulation results suggest that this
approach does reduce communication overhead and can lead to a clustering behaviour,

where groups of robots tend to stay together.

While market principle based approaches show promise regarding the management
of robot teams, they do require careful coordination — either by a central agent, or by
carefully timed distributed auction mechanisms. Perhaps for that reason, utility and
frontier based approaches have been more popular in recent years, being both easier
to implement and equally effective.

Another class of methods that typically involve more theoretical analysis comes

from the domain of graph theory, as detailed in the next section.

2.2.6 Graph Theoretic Approaches

Graph theoretic approaches use methods and ideas from the mathematical domain
of graph theory to coordinate teams of robots. The correlation between graphs and
robot teams is straightforward: robots are usually represented as nodes in the graph,

and edges typically represent communication links. There is a wealth of proofs and

28



useful conclusions in the area of graph theory, making it an attractive source of ideas
for multi-robot coordination algorithms.

Basu and Redi are among the first to model multi-robot systems as a graph [9].
They argue that biconnectivity is a desirable characteristic of any adhoc network
established by a team of robots. If the team is biconnected, failure of one robot
does not interrupt communication between any other pair of robots in the team.
Several simple algorithms are proposed to direct team members in such a manner
that biconnectivity is achieved.

Vazquez and Malcolm propose a completely distributed behaviour-based archi-
tecture, whose behaviours are meant to keep the robots in a mobile ad-hoc network
[147]. Using graph theory fundamentals involving articulations and bridges, the au-
thors impose constraints on robot motions to maintain a connected network. Each
robot maintain its own “comfort zone” within which it is well-connected to the team,
and the behaviour architecture ensures that robots do not leave their comfort zones.

Yao and Gupta apply a connectedness constraint to a multi-robot team, and
extract the “backbone” of the team by using graph theoretic principles to classify the
robots into ‘clusterheads’, ‘doorways’, and ‘gateways’ [158]. Non backbone robots use
a leader-follower behaviour to remain connected to the backbone. The team remains
fully connected at all times, even when obstacles are introduced into the environment.

A “sensor-based random graph” provides the basis for work done by Franchi et al.
[49]. In such a graph, a node contains the local safe region while arcs represent safe
paths between nodes. Arcs are established either by having been travelled by robots,
or by joining of two adequately close existing nodes. Actual directions of travel are
chosen by looking at frontier cells in the local node configuration, similar to [157]. In
a similar approach, Julia et al. develop a graph to represent safe zones and frontiers
as the exploration effort unfolds [72]. A reactive method is used to travel from one

safe zone to the next.
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Mukhija et al. employ an approach that is in some respects similar to the ideas
proposed later in this thesis [97]. A fixed base station is assumed, and robots act
either as relay nodes or as explorer nodes within an exploration tree. Each robot can
travel in one of a discrete number of directions, and new robots are added to the tree
according to a baseline algorithm that behaves similar to depth-first tree traversal.

However, nodes must remain static while behaving as relay nodes.

While many real-world factors can be difficult to model in a graph (e.g. exact
path costs, or unexpected communication drop-outs), coordination of multiple robots
seems a natural candidate application for graph like methods. Graph-based methods
have been applied with great success to the problems of mapping (where each set of
sensor readings can correspond to a node) and navigation (where graphs can be used
for path planning), and it seems likely that there will be increased research in this
direction for finding solutions to multi-robot exploration in the near future.

Approaching the multi-robot exploration problem from quite a different angle, sev-
eral groups have proposed the use of miniature electronic tags during the exploration

effort, as detailed in the next section.

2.2.7 Exploration with Environmental Tagging

In recent years miniature electronic tags that can store information have emerged as a
highly useful technology, and there is great potential for exploring robots to drop such
tags as they explore and thereby assist their teammates. Oft-cited advantages of tags
are that they are cheap, small, can help with localisation, and can be used by human
responders to find a path in an explored environment. As a result, there is a wealth
of research regarding the use of tags for assistance with multi-robot exploration.
Kleiner, Prediger and Nebel propose an approach in which radio frequency identi-

fication (RFID) tags are dropped at suitable locations during the exploration process
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(nodes corresponding to unique sensor measurements in the common scan-matching
algorithm originally proposed by Lu and Milios [85]) [73]. Tags store the relative
locations of frontier cells and visited cells, which allows robots passing later on to
update their information and explore more effectively.

Ziparo et al. simulate a team of robots deploying RFID tags that can be used
to significantly reduce the size of the search space [162]. Robots deploy these tags
autonomously, and once deployed the tags act as coordination points. The overall
approach is hybrid centralised /decentralised: robots plan their paths locally, but a
global coordination mechanism periodically moves robots to new interesting locations
to prevent them from being trapped in local minima.

Ferranti, Trigoni and Levene propose “Brick & Mortar”, a fully distributed ap-
proach in which agents tag the environment as they explore [44]. By reading in-
formation left on tags by teammates (e.g. whether a cell is unexplored, explored or
visited), agents know which direction to proceed in to make the exploration as effi-
cient as possible. In extensive simulation the authors demonstrate that this approach
outperforms both multiple depth first search and Ants [76]. An extension of this
approach proposes evacuation route discovery methods that can proceed in step with

the exploration effort [43].

While the use of such tags brings with it additional challenges (such as the engi-
neering of a tag dropping mechanism, and the ability to find and read tags), it seems
that there is great scope for such methods to improve the efficiency of exploration,

and it seems likely that there will be more research in this direction in the near future.

2.2.8 Coverage

Various authors approach the multi-robot exploration problem from a theoretical

angle, in particular regarding solutions to the so-called coverage problem [27]. This

31



problem can be defined as “visiting each location in known terrain to perform a task”
[14]. While solutions to this problem are important for such applications as robotic
lawn mowing, vacuuming, harvesting or mine clearing, they are not as relevant to
robotic exploration, where robots need to cover terrain sensorially but not physically.
Low-cost high-quality sensors such as laser range finders and cameras mean that
robots do not need to sweep entire terrains to fully investigate them. Nevertheless
some of the approaches to the coverage problem may be of relevance so it is briefly
discussed here.

Extensive research into the coverage problem has been conducted by Koenig,
Szymanski and Liu, using a paradigm based on ants, or ant robots [76]. Stating
that ants “are simple to design, easy to program, and cheap to build. This makes it
easy to deploy groups of ants and take advantage of the resulting fault tolerance and
parallelism” [76], Koenig et al. study and implement several algorithms, including
learning real-time A* and Node Counting. The former, guaranteed to be polynomial
in the number of locations, outperforms the latter which can be exponential in the
square root of the number of locations.

Building on the idea that terrain coverage is an instance of multi-robot span-
ning tree coverage [60], Zheng et al. prove that the multi-robot coverage problem
is NP-complete and propose a Multi-Robot Forest Coverage algorithm [14]. In this
algorithm, the environment is represented by a graph, and a rooted tree cover is found
where the roots are vertices of the graph containing robots. Each robot must then
circumnavigate its tree. The polynomial computation time of this approach is an
improvement on previous approaches.

Agmon, Hazon and Kaminka extend this field with an extensive discussion of
the nature of such spanning trees and how they may be constructed in order to
minimise the time required for coverage [1]. According to their simulation results,

non-backtracking multi-robot spanning tree coverage usually outperform other algo-
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rithms. In all cases, relatively simple, grid-based environments are assumed, as is
prior knowledge of the environment.

A different sort of coverage is examined by another set of authors: communication
coverage. In this problem domain, the goal is to arrange a team of robots in such a
manner that they are within communication range of the largest possible space.

Poduri and Sukhatme aim to deploy a team of robots in an unknown environment
such that each robot has a fixed number of neighbours, and propose an approach based
on artificial potential fields [114]. Interaction between individual members of the team
is governed by a repellent force that causes team dispersion, and an attractive force
that prevents communication loss.

Esposito and Dunbar establish a set of control laws for swarms of robots to navi-
gate through obstacle-filled environments while always maintaining connectivity [42].
In their approach, all robots of the team must pass on the same side of a given ob-
stacle to maintain connectivity. The behaviour is shown to work both in simulation
and on a team of Koala robots.

Further control laws to drive robots toward desirable sensing configurations are
developed by Schwager et al. [128]. Given knowledge of relative sensory importance
of regions of the environment, robots navigate towards estimated centroids of their

respective Voronoi regions. The approach is demonstrated in a physical system [127].

The Coverage problem is a well studied field of research and many of these solu-
tions show great promise. However, for many applications, such as robotic search-
and-rescue, the methods are unlikely to apply: typical robot platforms may not be
able to leave a large number of traces, which ants-like methods require; the environ-
ment may be too complex or fractured for forest coverage algorithms to be effective;
or the environment may be too extensive for potential field like methods to be useful.
Thus a need remains for robust multi-robot exploration methods that may not solve

the coverage problem, but are useful in other application areas.
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2.2.9 Other Approaches

This section details approaches that do not fit into any of the above categories, but
have relevance to the research discussed in this thesis.

Pimentel and Campos model a multi-robot exploration team as a mobile ad-hoc
network in which all team members try to stay in range of one another and the base
[125]. The authors propose a prediction model that receives location and velocity
data from all robots in the team and uses this to estimate future network topology.
This is accomplished using local so-called “energy functionals” which incorporate
aspects relative to network connectivity, environment and task completion. For each
robot’s local space the goal is to select immediate actions that minimise local energy
functionals.

Several authors propose the use of features, rather than occupancy grids or fron-
tier cells, for exploration. Newman, Bosse and Leonard develop an action selection
algorithm that steers robots towards open, new areas [103]. Trajectories are planned
based on perceived features (such as walls). The location of such features is assumed
to be uncertain, and represented by a probability distribution function. Utilities
can then be determined for each possible goal using criteria such as trying to visit
new, open areas and staying away from previously visited areas. The approach is
demonstrated on a B21 robot that accurately explores an indoor environment.

Baxter et al. propose a potential field sharing multi-robot system in which individ-
ual robots perform no reasoning but a cooperative exploration behaviour nevertheless
emerges [10]. Individual robots calculate potential field forces at eight separate lo-
cations around themselves, and move in the direction of greatest attraction. Using
two separate potential field sharing methodologies (which perform similarly in simu-
lation), robots indirectly communicate locations of obstacles to one another.

Mosteo, Montano and Lagoudakis propose four algorithms based on the same re-

active framework [96]. Robot routes are built incrementally, one target at a time, and
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an underlying motion control mechanism based on the idea of virtual ’spring’ forces
between robots ensures that the team remains interconnected, much like a mobile
ad-hoc network. The four proposed algorithms include a greedy allocation, where
robots are assigned to closest targets; a traveling salesman problem-based algorithm,
where clusters of goals are assigned to robots and traversed using a travelling sales-
man problem (TSP) solver; a clock allocation algorithm, which induces a sweeping
behaviour using pre-computed polar coordinate-based task allocations; and an auc-
tion allocation, which draws on previous methods [79] to preplan the order of tasks
according to bidding rules. Simulation experiments demonstrate that the TSP-based
and clock algorithms exhibit the smallest sensitivity to actual communication range,
making them suitable for situations where the communication range is not known in
advance.

Briiggemann et al. develop a model for accurate signal strength prediction in yet
unvisited areas [16]. The prediction model adjusts online to different environment
types and robot systems. The authors argue that knowing future expected commu-
nication quality can be used for an improved exploration strategy, though an actual

implementation of such is left as future work.

2.2.10 Comparison of Key Approaches

This section provides a comparison of the key approaches that are most relevant to
the ideas discussed later in this thesis. Fach of these approaches is evaluated along

the following five axes:
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1. Type: Which category of method does the approach primarily fall into? (See

the earlier sections of this chapter for descriptions of each.)

Leader-follower / Line-of-sight (LF)
Frontier / Utility based (FB)
Market-principle based (MP)
Graph theoretic (GT)
Tagging-based (TB)
Coverage-based (CB)

Other

2. Communication: Does the approach assume perfect, flexible, environmental

or no communication?

e Perfect: all robots can communicate with all other robots at all times.
e Flexible: robots may come in and out of range of one another.

e Environmental: robots may communicate by leaving messages in the
environment.
3. Coordination: Is the team coordinated in a central, distributed, or hybrid

manner?

e Central: a single control agent governs the behaviour of the team. This
agent may be a robot, a command centre, or a human.

e Distributed: agents make decisions on their own based on local informa-
tion.

e Hybrid: the approach contains both centralised and distributed elements.

4. Complete: Does the approach guarantee a complete exploration of the full

environment, however large (ignoring power limitations)?

5. Central BaseStation (“BS”): Does the approach maintain a link to a base

station, or involve relaying information back to some central location?

The full comparison is presented in Table 2.2.
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Approach Type | Comm. | Coordination | Comp. | BS
Arkin & Diaz, 2002 [3] LF Perfect | Centralised No | Yes
Nguyen et al., 2004 [105] LF Perfect | Distributed No | Yes
Howard et al., 2006 [66] LF | Flexible | Distributed Yes | Yes
Yamauchi, 1998 [157] FB Perfect | Distributed Yes | No
Simmons et al., 2000 [134] FB Perfect | Centralised No No
Burgard et al., 2005 [18] FB | Flexible Hybrid Yes No
Fox et al., 2006 [48] FB | Flexible Hybrid Yes | No
Rooker & Birk, 2006 [119] FB Perfect | Centralised Yes | No
Rooker & Birk, 2007 [120] FB | Flexible | Centralised Yes | Yes
Visser & Slamet, 2008 [148] FB Perfect | Distributed Yes | Yes
Dias & Stentz, 2000 [37] MP | Perfect | Centralised Yes | No
Zlot et al., 2002 [163] MP | Perfect | Centralised Yes | No
Franchi et al., 2009 [49] GT Perfect | Distributed Yes | No
Ziparo et al., 2007 [162] TB Env. Distributed Yes | No
Poduri & Sukhatme, 2004 [114] | CB | Flexible | Distributed No No
Pimentel & Campos, 2002 [125] | Other | Perfect | Centralised No | Yes
Role-Based Exploration FB | Flexible Hybrid Yes | Yes
(Chapter 4)

Table 2.2: A comparison of the key approaches most relevant to this thesis. Categories
and abbreviations are explained in Section 2.2.10.

This concludes the literature review. In the next chapter, the exact nature of the

problem tackled by this thesis is defined. Thereafter, Chapter 4 presents a solution.

37



Chapter 3

Problem Statement

This chapter serves as a blueprint for the experiments conducted in the remainder
of this thesis. It sets out definitions and assumptions, lists the exact goals of the
exploration effort, and defines five performance metrics that are used to compare and

evaluate competing exploration algorithms later in the thesis.
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3.1 Definitions and Assumptions

The following definitions and assumptions are made in this thesis:

1.

“Robots”, as referred to throughout this thesis, are physically embodied, mobile

vehicles with an onboard computing capacity.

The robots could be ground-based or aerial — the algorithms apply equally to
both. All experiments (simulation and real) involve robots acting and sensing in
a plane; the possibility of extending to 3-dimensional environments is discussed

later, in Section 8.3.

. All robots have the ability to perform simultaneous localisation and mapping

(SLAM).

In other words, every robot is capable of creating a map of its surroundings and

localising itself within this map.

This capability may be optical or sonar-based, but would more likely involve
laser range-finder data, which is generally more accurate. Laser range-finders
are very common on ground-based platforms and have recently been demon-

strated on a unmanned aerial vehicle (UAV) [56].

The localisation and mapping problem is not a simple one. In flat, 2-dimensional
environments, much success has been achieved, typically using particle filters
[74, 48] or scan-matching [85, 113]. In simple 3-dimensional environments, there
is already much promise [104, 94, 56, 111]. For complex 3-dimensional environ-
ments, such as those encountered in rescue scenarios, much work still needs to
be done. However, a team of robots cooperatively exploring will need to know
where they are and where to go next, so it is realistic to expect that this is a

problem that will see much attention and progress in coming years.

For the algorithms proposed later in this thesis, localisation does not need to be

39



perfect and there is some room for error. However, robots need to be able to find
their way to within communication range of agreed rendezvous points. Frequent
rendezvous between team members can be helpful for mutual localisation and

map correction [47].

Maps created by the robots must keep track of explored, free space. In the
remainder of this thesis occupancy-grid based maps are assumed (as originally
proposed by [41]), but the approaches could be tailored to topological maps as

well'. The notion of free space is essential for calculation of rendezvous points.

3. At the point of entry there is a “BaseStation”, which is immobile and can com-

municate with the robots.

In robotic search-and-rescue, this corresponds to the human responders’ point
of entry, while in reconnaissance or surveillance this corresponds to the com-
mand centre where information is gathered and analysed. Not all multi-robot

exploration applications require a central base station, but many do.

4. All robots begin the exploration effort with a common frame of reference.

Robots may enter the environment at different locations or at different times,
but for purposes of map sharing they must know their starting location in a

common global frame of reference.

For some applications, it is conceivable that robots would start with separate
frames of reference (e.g. two robots exploring a mine from opposite entrances).
Several map-merging algorithms for such applications exist [48, 22]. However,
these applications are not considered in this thesis, although a possible extension

to incorporate such scenarios is briefly discussed in Section 8.3.

LOccupancy-grid based maps typically maintain spatial information of the environment in a grid,
where every cell of the grid corresponds to a specific space in the environment. Topological maps
typically keep track of objects or features of the environment, and their relations to one another.
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5. There is no prior knowledge of the environment.

Robots only know what they have sensed themselves and what their teammates

communicate to them.

In some applications (such as inspection of hazardous areas) this may not be
true, as prior floor plans or the like may exist. Incorporating prior knowledge

into the exploration effort is left as future work, as discussed in Section 8.3.

6. Agents may only communicate when they are within communication range of

one another.

Communication ranges are simulated in different ways in the experiments re-
ported later in this thesis. These are described in the relevant sections detailing

experimental results.

7. Each robot has the ability to calculate “path costs” of potential trajectories.

The notion of path cost is essential for several aspects of the algorithms proposed
and compared in this thesis. Unless otherwise indicated, the path cost is the
distance of the path between two points of interest. While the real “cost” of
traversing this path may not correspond exactly to its distance (for example, a
path having many changes of direction could be more difficult to follow than a
straight path of equal length), using the distance as a quantitative measure is a

useful abstraction that makes calculation of several key heuristics much simpler.

8. Robots do not act as obstacles for other robots.

In the simulation experiments, robot—robot collisions are ignored for purposes
of simplicity. Clearly this was not possible in the experiments using real robots;
for these, collision avoidance methods were used to prevent robots from running

into one another. These are explained in greater detail in Chapter 6.
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3.2 Goals

The main goals of the exploration effort are:

1. To explore the environment as efficiently as possible.
Efficiency here is meant in terms of maximising the use of available resources,
i.e. sensing the maximum amount of free space in the shortest possible time. A
related problem therefore is preventing robots from exploring areas that have
already been explored by teammates, a common problem in multi-robot explo-

ration.

2. To relay new information to the BaseStation as quickly and as often as possible.

Information is useless if it doesn’t reach human responders.

3. To minimise the time that team members spend out of range of the BaseStation.
The more often robots are within range of the BaseStation, the more often
updates are received and the easier it is to control the robots manually. Control
over the full robot team is highly desirable (for example, if an environment is
deemed to have become either highly risky or of minimal interest, and the full

team needs to be pulled out).

4. To fully explore the environment.
This may seem an obvious goal, but many exploration algorithms will fail to
achieve this (for example those which do not allow robots to explore beyond the

team’s communication range).
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3.3 Performance Metrics

For the evaluation and comparison of individual exploration algorithms, it is helpful
to have a common set of easily measurable, objective performance values that indicate
the relative success of each approach.

Several metrics have been proposed elsewhere. Mosteo et al. use (i) total distance
traveled by robots; (ii) mission timespan; and (iii) average task completion time [96].
Zlot et al. use a metric that takes into account both area explored and the sum
of all robot distances traveled [163]. This thesis builds on the above metrics and
proposes some additional ones. The metrics are specifically tailored to investigate to
what degree the goals have been fulfilled (efficient exploration, relay of information
to BaseStation, team connectivity, and full exploration).

Specifically, the following five metrics are used for evaluation of algorithms in later

chapters:

e Total Area:

Ml - ATotal

where Ay is the total area explored (to be maximised). The total area is the
union of the areas explored by all robots of the team. “Explored area” refers to

the area that has been sensed by a robot using the range scanner.

o Knowledge at BaseStation:

M,y = Apg

where Apg is the total area known at the BaseStation (to be maximised).
Knowledge gathered by members of the team is only useful if it reaches the
human responders. While some robots may know about far reaches of the en-

vironment, they may not have an opportunity to communicate this knowledge
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back to the command centre. For applications like search-and-rescue, this met-

ric is considerably more important than M;.

Information Sharing:

1 & A
My =~

x 100%
n.:3 ATotal

where A; is the explored area known to robot ¢, and n is the number of robots
(to be maximised). In other words, this metric measures the percentage of the
full current exploration effort known to each robot, on average. The purpose
of this metric is to examine how well members of the team share information:
when a robot decides where to explore next, it is helpful to know what its
teammates are doing and what other parts of the environment have already
been explored. The more knowledge is shared between robots, the easier it is
to efficiently coordinate the team effort and prevent repeated exploration of the

same area.

Responsiveness:

1.
M4:Ei:2102‘

where ¢; is the time since the most recent message received from the BaseStation
by robot i was originally sent (to be minimised). In other words, this metric
measures the delay of commands from BaseStation to robots, averaged over all
robots in the team. Human responders will want to have control over the robot
team and it is not desirable to have robots out of the range of the command
centre for a long time. Note that the last message from BaseStation need not

be received directly — it may arrive over multiple hops or via a mobile relay.
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e Completion:

M5 = tTotal

where tryq is the time required for knowledge of the full environment to be
attained by the BaseStation (to be minimised). This metric, while closely re-
lated to M, specifically addresses the goal of fully exploring the environment.
(In several results presented in Chapters 5 and 6, the time taken to attain

knowledge of 50% of the environment is also presented).

This completes the presentation of the Problem Statement. In the next Chapter
Role-Based Exploration is introduced and described, and thereafter its performance
is evaluated using the metrics presented here, both in simulation (Chapter 5) and in

reality (Chapter 6).
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Chapter 4

Role-Based Exploration

This chapter presents the main contribution of this thesis: Role-Based Ezploration, a
new exploration algorithm for teams of robots exploring unknown, communication-
limited environments. A description of the basic approach is followed by sections
detailing two significant improvements. The first involves an improved method for
determining rendezvous locations. The second involves the introduction of role swaps
within the team, leading to a dynamic team hierarchy that evolves as the exploration
effort unfolds. Both improvements lead to gains in exploration speed, team connec-
tivity and information sharing; the latter additionally results in a useful emergent
behaviour that adapts well to variable communication availability and to any shape

of environment.
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4.1 The Basic Approach

4.1.1 Roles and Team Hierarchy

In basic role-based exploration, each robot in the team is assigned one of two possible

roles:

1. Explorer. Explorers have the task of exploring the farthest reaches of the envi-
ronment. To communicate their findings, they return periodically to previously

agreed rendezvous points where they pass their knowledge to a Relay.

2. Relay. Relays act as mobile links between Explorers and the BaseStation, fer-
rying information back and forth. The primary purpose of a Relay is to com-
municate Explorers’ findings up the communication chain, and to communicate
control commands from the Basestation down the communication chain. If a
Relay discovers information about the environment while relaying, this con-
tributes to team knowledge, but exploration is only an incidental byproduct of

the Relay’s movement.

Roles are assigned prior to the start of exploration. In the basic approach, the
roles do not change (at least not until a dynamic hierarchy is introduced in an ad-
vanced version of Role-Based Exploration in section 4.3). The team hierarchy may

be represented by a tree, as demonstrated in Fig. 4.1.

4.1.2 Localisation, Mapping and Occupancy Grid

Each robot keeps track of its own pose (location in the x—y plane and yaw) and has
a range sensor. Range measurements are synchronised with pose measurements to
enable an updating of the map.

For experiments reported in this thesis, an occupancy-grid based map was used

[41], although the approach could be tailored to topological or feature based maps

47



AN
¢
. 4

Figure 4.1: A possible hierarchy for Role-Based Exploration. The BaseStation (top)
is the root of the hierarchy tree, Explorers (blue) are leaves, and there may be one or
more Relays (red) in a branch.

|
|
A
|

if required. In the occupancy grid, each cell represents a space in the world (for
example, bemx5cm). For purposes of navigation and planning, it is necessary to
know for each cell whether it is unknown, free, or an obstacle.

Since data volume can pose difficulties for large maps, both in terms of com-
munication and in terms of computation, a compact storage method for the oc-
cupancy grid was desirable. While two bits would suffice to store the cell’s state
(unknown/free/obstacle), there are a number of additional pieces of information as-
sociated with each cell, as detailed in later sections. Therefore, each cell of the grid
was stored as a single byte, with each bit representing a single piece of information
as detailed in Table 4.1. Individual bits can be toggled on and off as new information
arrives. There are possibilities to compress information even further (for example, in
the experiments on real robots, maps were compressed using the png image format —
see section 6.3.3).

Given a range scan and a pose, the occupancy grid is updated as demonstrated
in Fig. 4.2: First, the points of the scan (provided by the range sensing device as a

distance measurement for each angle scanned) are converted to Cartesian coordinates
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Bit Information

0 | free space

1 | safe space

2 | obstacle

3 | boundary of frontier

4 | belongs to skeleton

5 | child rendezvous point
6 | parent rendezvous point
7 | path

Table 4.1: Information stored in one byte at each cell in the occupancy grid. Each
bit is toggled on or off, indicating whether the related information is true or not.

that match the coordinate system of the map. It is easy then to create a polygon of
the points found by the scan.

Second, a flood-fill algorithm is used to fill this polygon in the map as free. An
efficient way to do this is to choose a point known to be free (such as the cell imme-
diately in front of the robot), and recursively designate as free all neighbours of this
cell that are within the polygon but not already obstacle cells.

Third, where subsequent scan points are very close together, it is reasonable to
assume that they are part of a connected obstacle, so the corresponding cells in the
grid are labeled as obstacle and connected.

For the experiments conducted in simulation (Chapter 5), perfect localisation and
scan data was assumed. This was a strong assumption since in reality odometry can
be noisy and unreliable, and range scan data can contain spurious or noisy measure-
ments. However, all exploration algorithms suffer from these problems equally and
the purpose of the experiments was to compare Role-Based Exploration to existing
techniques in a straightforward, simple, and repeatable manner. Thus this assump-
tion was considered acceptable.

For the experiments conducted on a real system (Chapter 6), the problem of noisy
data had to be addressed, and both scan matching and particle filter techniques were

used for improved localisation.
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(a) The robot is represented by the circle; the line through the circle
indicates the direction that the robot is facing. The robot’s range scan-
ner has a 240° field of view, so there is a blind spot behind the robot.
Data from an initial range scan is received. This data is converted to
Cartesian coordinates (marked as red dots).

(b) Connecting subsequent scan points leads to a polygon. A point
just in front of the robot is chosen.

(c) Using this point, a flood fill algorithm is used to fill the polygon
with free space.

(d) Scan points sufficiently close together are connected as obstacles.

Figure 4.2: Turning range scan data into an occupancy grid based map
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4.1.3 Frontier Polygons and their Utilities

In many existing approaches, autonomous exploration is achieved by the use of “fron-
tiers” (following Yamauchi’s work [156, 157]). Frontiers are the boundaries between
known space and unknown space. For the experiments described in this thesis however
a slightly different approach was applied that uses frontier polygons. This approach
is based on a system that is used by the “Amsterdam Oxford Joint Rescue Forces”,
a joint team between the Universities of Amsterdam and Oxford [151, 149, 150] that
competes annually in RoboCup’s Virtual Robots competition [6].

Frontier polygons are determined as shown in Fig. 4.3. An essential tool is the
concept of safe space. Safe space is the free space within a “safe radius” of the robot’s
location (in other words, open areas near the robot). The safe radius is typically
about half the distance of the range sensor’s maximum range. When the safe space
is artificially superimposed on the free space, the free areas that remain form the
“frontier polygons”. Frontier polygons are easy to calculate in a map using standard
image processing techniques — the method chosen in the system presented here uses
contour tracing?.

Defining frontiers in this manner means that some useful values can be calculated
for each frontier polygon, for example its area (which we treat as the potential in-
formation gain) and the path cost of reaching it. For the latter, the centre of the
frontier polygon is used as a goal for the path planner.

These values can be used to assign a specific utility to each frontier polygon p;:

Ulpi) = Ap:)/C" (pi)

where A(p;) is the area of frontier polygon p;, C(p;) is the length of the path to that

'Some good examples of how to perform this are available at http://www.
imageprocessingplace.com/downloads_V3/root_downloads/tutorials/contour_tracing_
Abeer_George_Ghuneim/alg.html
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(a) Safe space (grey) is artificially superimposed on free space (white).

P>

(b) Fronmtier polygons (outlined in magenta) are the areas of free space
beyond safe space. For each frontier polygon it is possible to calculate its
area and the path cost to its centre.

Figure 4.3: Using safe space to find frontier polygons

frontier polygon’s centre (the path cost), and exponent n determines the exploration
behaviour. High values of n lead to exploration of nearby frontier polygons (such as
rooms) whereas low values mean that robots are more likely to pursue larger frontier
polygons (such as hallways or open spaces) [152]. For most experiments reported later
in this thesis, n = 2 was used, since in practice this provided a good balance between

trying to explore open space quickly, while not changing direction too frequently.

4.1.4 Frontier Selection and Team Coordination

When there are multiple explorers active, there is a risk that two of them may choose
to explore the same frontier polygon. This is likely to be an inefficient use of resources,
and it makes more sense for teammates to coordinate in such a manner that they
explore different areas. This is a common robotics problem; elsewhere a robot-to-

frontier assignment algorithm has been proposed by Burgard et al. that coordinates
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Input: Set R of explorers within range; Set F' of frontier polygons
Output: List L of {r;, f;} robot to frontier polygon assignments for Vr; € R
Data: @ is a priority queue of all {r;, f;} pairings, ordered by utility U, ;
foreach r; € R do
foreach f; € F' do

U, ;j = Area(f;)/Straight LineDistance(r;, f;)"

Q.add({r:, f;})
end
end
while not Q.isEmpty() do
{raa fb} = onp()
Uap = Area(fy)/PathCost(ra, fp)"
if U,p > U(Q.peek()) then

L.add({ra, fo})

foreach {r;, f;} € QQ where i ==a or j ==b do

| Q.remove({r;, f;})

end

else

| Q.add({ra, fs}

end

end

Algorithm 1: The robot to frontier polygon assignment algorithm, as first pro-
posed in [148]. Typically the bottleneck in robot-frontier assignment calculations is
the time it takes to calculate paths from robots to frontier polygons (especially in
large environments). Using straight line distances as an initial estimate instead of

full path costs means that fewer accurate paths need to be calculated.

the team centrally [18]; in a later related work by Wurm et al., the robot-to-frontier

assignment problem has been shown to have an optimal solution, using the Hungarian

method [155, 77].

Calculating the utility of a frontier polygon for a particular robot involves calcu-

lating the cost of the path from that robot to that frontier polygon’s centre. However,
paths can be expensive to compute in large or complex environments. To speed up
the process of assigning robots to frontier polygons, an approximation is therefore
initially applied: instead of computing the full path, the straight-line distance is
used (which ignores obstacles). This method was originally proposed by Visser and

Slamet in [148] and has been shown to be quick and effective at computing the robot

to frontier polygon assignment.
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The full algorithm is presented in Alg. 1, and can be summarised as follows: each
explorer calculates, for each robot-frontier pair {r;, f;}, the utility U, ; (where the set
of robots is all explorers within range including itself) using as a path cost the straight
line distance from 7; to f;. The pairings are then inserted into a priority queue in
order of their utility, with the pairing having highest utility at the front. A pairing is
retrieved from the front, and its true utility (using the path cost, instead of straight
line distance) is calculated. If it remains the pairing having the highest utility, then
the robot from that pairing is assigned to the frontier polygon from that pairing, and
all remaining pairings involving that robot and that frontier polygon are discarded.
If it does not, that pairing is reinserted in the queue at the correct position using the
new exact utility value. Iteratively, all robots are assigned to frontier polygons in this
manner.

While this algorithm may not be optimal in rare cases, it nevertheless performs
well, is easy to implement, and can be calculated quickly. The straight-line estima-
tion step in particular means that far fewer robot-frontier polygon paths need to be
calculated.

It must be emphasised that each robot determines this assignment on its own, in
real-time, using its onboard computing capacity; there is no necessity for a central
coordination mechanism. Since explorers within range of one another share the same
map (and will therefore compute the same explorer-frontier pairing), no two robots
will be assigned to the same frontier polygon. An exception occurs when there are
fewer frontier polygons than robots; in this case more than one robot may pursue the
same frontier polygon. In practice (both in simulation and in reality), such cases are

rare, as new frontiers tend to open quickly in most environment types.
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4.1.5 Communication and Map Sharing

Almost all robot teams today use some form of wireless communication. Depending
on the hardware and medium used, bandwidth can be an issue and there has been
much work on compressing or compactly communicating full or partial maps [90, 112].
In the implementation used here, with an occupancy grid containing a single byte
for each cell (see section 4.1.2), data requirements are not huge. A grid of 800 x
600 cells, for example, requires 480KB. For robots using standard 802.11 wireless to
communicate, this is a manageable load, and in the implementation on a team of real
robots (see chapter 6) sharing maps of this size was not a problem and occurred at a
rate of multiple times per second, when desired. Possibilities for further compression
certainly exist: in a later implementation on real robots that used only network
cards on the robots themselves to communicate (and no central router), PNG image
compression reduced the same maps to 4KB or less (this is described in greater detail
in section 6.3.3).

As a result, it was assumed for the purposes of this thesis that robots, when in
range, can fully communicate both their own position and their own map to one an-
other. Knowing teammates’ positions means that robots can avoid one another and
erase erroneous obstacle measurements in their maps that are actually their team-
mates. Knowing teammates’ maps means that robots can increase their knowledge
of the environment and coordinate their exploration so that areas already explored
are not visited again.

The use of ad-hoc wireless networks today means that there does not need to be
a central network infrastructure. Robots can detect and recognise one another once
in range, and connect. In simulation it was therefore assumed that robots could fully
share their information whenever they were in range according to the communication
model used; on the system of real robots this was successfully implemented, verifying

the assumption.
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4.1.6 State Transitions and Rendezvous

A Relay must: meet an Explorer; exchange information with this Explorer; return
to the Basestation; exchange information with the Basestation; and go to meet the
Explorer again. An Explorer must: explore for a time; return to meet its parent
Relay; exchange information with this Relay; and then return to exploring. These
state transition for Explorers and Relays are presented in Fig. 4.4. (Naturally there
are potential points of failure in this approach, e.g. if a Relay fails, its child Explorer
may end up stationary, waiting for it. These are discussed further in section 7.4.1.)

The periodic meeting for information exchange (“rendezvous”) is clearly a crucial
element of the approach. It is essential that Relay and Explorer agree on a specific
location for rendezvous, so that they can find one another. The rendezvous location
is thus a specific place in the map, chosen by the Explorer and communicated to the
Relay.

Relay and Explorer share the same map when in range. Therefore, the Explorer
can predict the Relay’s path, and determine how long it will take the Relay to return
to the BaseStation, turn around, and make its way to the next rendezvous point. At
any point in time the Explorer can check whether the Relay is soon to reach ren-
dezvous, and whether the Explorer itself should stop exploring and make its way to
rendezvous as well. In other words, the Explorer can determine the ideal moment
of transition from state Fxplore to state ReturnToParent. In this manner the ren-
dezvous is carefully timed, with both the Relay and the Explorer approaching it at
approximately the same time. This is important for purposes of efficiency: well-timed
rendezvous means that no robot wastes time waiting for a teammate to appear.

In the basic version of Role-Based Exploration, the most forward point of progress
is chosen as the subsequent rendezvous. In other words, when an Explorer makes its
way back to a rendezvous, it already knows where it will tell its parent Relay to

meet it the next time. Choosing locations for rendezvous in this manner means that
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Figure 4.4: State transition diagrams for Explorers and Relays. The states outlined
in red are synchronous, during rendezvous.
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subsequent meetings between the robots are set deeper and deeper in the environment,
pushing the exploration effort further and further into new areas.

Note that chance encounters are taken into account. If an Explorer happens to
meet its parent Relay by chance prior to their scheduled rendezvous (this can happen
for example in environments containing loops), then the chance encounter is treated
like a planned rendezvous; both robots exchange information, and replan.

There is an inherent trade-off involved in the rendezvous process. If the chosen
rendezvous location is deep in the environment, the Relay must travel farther to reach
it and updates at the BaseStation are received less frequently. If it is chosen closer
to the BaseStation then the Explorer spends much time returning to rendezvous and

less time discovering new information.

4.1.7 Preventing Redundant Relaying

When two Relays are in state ReturnToParent and they are both taking a similar route
back to BaseStation at the same time, they unnecessarily duplicate one another’s
work. It would be more efficient to share information between the two, and have only

a single Relay make the trek back to BaseStation.

= . QP

-/

Figure 4.5: An example of redundant relaying

An example is presented in Fig. 4.5. A is a relay for explorer B; C is a relay for
explorer D. Both Relays have recently rendevoused with their child and are now on
their way back to the BaseStation. It is unnecessary for them both to make the trip

along the long hallway; it would make more sense for them to share information, for
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A to travel back on its own, and for C' to return to the next rendezvous with its child.
This redundant relaying is straightforward to prevent by introducing the “Redun-
dancy Rule”: see Table 4.2.

Consider two Relays, R4 and Rp that have encountered one another and established a
communication link. If the following statements are all true:

e R, is in state ReturnToParent and Rp is in state ReturnToParent
e R4 and Rp have the same parent (usually the BaseStation)

e R, is closer to the parent than Rp (without loss of generality)

then let R4 shoulder the burden for both Relays in its return to the parent, and let Rp
change state to GoToChild.

Table 4.2: The Redundancy Rule

This rule is only applied to pairs of Relays in different branches of the tree, and
does not affect Explorers. The rule is a very minor, simple adjustment to basic
Role-Based exploration, and ensures that two Relays don’t waste time moving down

hallways side by side.

This completes the description of Role-Based Exploration in its most basic form;
an example showing a full cycle of the states each type of role undergoes is presented
in Fig. 4.6. Role-Based Exploration has been compared extensively to several ex-
isting algorithms [34]; simulation results are presented in Chapter 5 and results of
implementation on a real system are detailed in Chapter 6. Over the course of the
research, however, several key improvements were made to the basic algorithm; these

are detailed in the following sections.
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BaseStation
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(a) Unknown space is blue, explored space is white. An Explorer (magenta triangle) starts exploring,
and its parent Relay (red triangle) follows.

BaseStation

(b) Explorer and Relay are in communication range of one another, but the Relay reaches the edge
of the BaseStation’s communication range. It continues following the Explorer for a short time.
Soon it decides to turn around and return to BaseStation. At this point the most forward point
of progress (the Explorer’s location, shown in subsequent figures as a green circle) is chosen as the
next rendezvous point.

BaseStation
]

=i}

(c) The Relay brings new information to the BaseStation, the Explorer continues exploring.

BaseStation

(d) The Explorer can determine exactly when it must turn around in order for it to reach rendezvous
at the same time as the Relay. When it turns, it chooses its current location as the next rendezvous
point (shown in subsequent figures as a dark green circle).

BaseStation

.\ » - *
|

(e) Relay and Explorer meet at the first rendezvous point. The Explorer communicates its updated
map to the Relay, and tells it where the next rendezvous (dark green circle) will be.

Figure 4.6: A demonstration of basic Role-Based Exploration



4.2 Improving Rendezvous

4.2.1 Common Problems

While the rendezvous point selection outlined in the previous section was successful at
pushing the exploration effort deeper into the environment, it was not always optimal.

There are certain situations where it leads to inefficient behaviour, for example:

1. Poor environmental choices for rendezvous

If at the moment the Explorer decides to return to rendezvous it is at a poor
location, then the subsequent rendezvous will have to occur at that poor loca-
tion. Poor locations are points in a dead end, behind an obstacle, or generally

close to an obstacle. Some examples are presented in Fig. 4.7a.

Exploration proceeds fastest when Explorer and Relay meet as quickly as possi-
ble; to meet as quickly as possible they need to enter one another’s communica-
tion range as quickly as possible; for them to enter one another’s communication
range quickly, it is desirable to arrange rendezvous in open space, or at junc-

tions. Some desirable rendezvous locations are presented in Fig. 4.7b.

2. Poor planning choices for rendezvous

If the Explorer has chosen the next rendezvous location in advance, and then
changes its mind regarding where to explore next, there is a chance that it will
have to travel a long distance to the next rendezvous. This means less time
for exploration and a loss of efficiency. It makes much more sense to choose for
next rendezvous a location that is easy to reach, thereby maximising exploration

time.

In short, it is desirable to choose rendezvous points in open space or at junctions,

and near the Explorer’s next intended exploration area.
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(a) Poor choices (b) Good choices

Figure 4.7: Comparing choices for rendezvous: some locations are much more suitable
than others

4.2.2 Skeletonisation

How can we find points that are in open space or at a junction? Two classes of

candidate methods exist for this task:

e Voronoi graphs. In Voronoi graphs, lines are constructed between a set of
points S in such a manner that each line is equidistant to its two nearest points.
Voronoi graphs have been used for topological map building, navigation, and
place detection [28, 29, 11]. When applied to a map, points in the walls are
added to the set S in order for standard Voronoi graph calculation algorithms

to work.

e Medial axis transform (also known as “thinning”). A medial axis trans-
form takes as input a binary image, and outputs a transformed image with
distance measurements to the closest obstacle at each cell. This is performed
using a distance transform with multiple passes over the image. A wide range
of techniques have been proposed to achieve this since the 1960’s, each hav-
ing various advantages or disadvantages; a review is presented in [80]. When
only the local maxima of the medial axis transform are considered, a skeleton
emerges. A common analogy for how thinning is performed is that of a prairie

fire: if one were to set fire to all edges of a shape simultaneously and extract
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(a) A Voronoi graph of an environment (b) Skeletonisation using thinning applied to
the same environment

Figure 4.8: Comparing Voronoi graphs with thinning

the locations where fires from two sides met, this would be the equivalent of the

shape’s skeleton.

For the purposes of experiments in this thesis, thinning algorithms were chosen
as slightly preferable to Voronoi graphs, since they provide a cleaner skeleton and
are easier and faster to compute (see Fig. 4.8 for an example of each). Specifically,
Hilditch’s algorithm was chosen for an initial implementation [63]. It proved to be

easy and fast to compute, and effective for finding a connected skeleton?.

4.2.3 Choosing a Rendezvous Point

Every point in the skeleton as calculated above is certain to be in open space, and
the skeleton contains every junction. There are many points in the skeleton however,
so it is necessary to reduce it further to a small set S of rendezvous candidates. This

is performed in three steps:

1. Finding junctions. Junctions are the most suitable rendezvous locations of
all, since they provide line of sight (also in terms of communication) in multiple

directions. Hilditch’s algorithm requires the calculation of a neighbour traversal

2A useful tutorial on how to implement Hilditch’s algorithm can be found at http://cgm.cs.
mcgill.ca/~godfried/teaching/projects97/azar/skeleton.html.

63


http://cgm.cs.mcgill.ca/~godfried/teaching/projects97/azar/skeleton.html
http://cgm.cs.mcgill.ca/~godfried/teaching/projects97/azar/skeleton.html

Do | P2 | P3
DPs | P1 | P4
P7 | Do | Ps

Table 4.3: To check whether a cell p; in the occupancy grid is a junction, it is necessary
to examine the cells immediately surrounding it. The traversal function T'(p;) is the
number of 0,1 patterns in the sequence ps, ps, ps, Ps, Ps, P7, P, P9, P2- When
T(p;) > 3, p; is a junction.

function T'(py), described in Table 4.3. This function can also be used to find

junction points in the skeleton: any point p; that is a junction in the skeleton

will have T'(p;) > 3. All junctions are added to the set S.

2. Filling. A skeleton may contain long stretches without junction points, for
example along a hallway, so it is necessary to fill some extra points in. This is
performed via iteration over all points in the skeleton; those points that are a

minimum distance from all existing rendezvous points are added to the set S.

3. Pruning. On the other hand, complex parts of the environment may contain a
large number of junction points in a small area — to simplify calculations, only
one point per given density is added. This is performed by iterating over the
current set of potential rendezvous locations; those points too close to another

point in S are removed.

These steps for choosing a set of candidate rendezvous points are demonstrated in
Fig. 4.9. What remains is a small set of possible rendezvous points, distributed fairly
evenly over the known environment and including all junctions. Since an Explorer,
after the current rendezvous, will move towards its preferred frontier, it makes most
sense to plan the next rendezvous in the vicinity of that frontier (as discussed also in
section 4.2.1). Thus the exact location for the next rendezvous is that point within
S that is closest to the centre of the Explorer’s next choice of frontier.

The full algorithm for rendezvous point calculation is presented in Alg. 2, and

several further examples of skeletonisation and rendezvous point candidates are pre-
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(c) Step 3: Pruning

Figure 4.9: Finding a set of rendezvous candidates

sented in Fig. 4.10.

Using such a method for determining locations for rendezvous led to significant
improvements in the efficiency of exploration [36]; the results were so compelling
that only this new method for rendezvous point calculation was used in subsequent

implementations.
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Input: The Explorer’s map M; the Explorer’s next frontier F
Output: The next rendezvous point e
Data: List of points S = hilditchThinning(M)
Data: List of points R (the list of candidate rendezvous points)
// Add junction points
foreach s; € S do
if neighbourTraversal(s;) > 3 then
| R.add(s;)
end
end
// Fill in extra points where distances are too far

foreach s; € S do
boolean addT oList = true

foreach r; € R do

if distance(s;,r;) < threshold T} then
addTolList = false

break
end

end

if addToList then
| R.add(s;)

end

end
// Prune points where distances are too close
foreach r; € R do
foreach r; € R,i # j do
if distance(r;,r;) < threshold T, then
R.remove(r;)

break
end

end

end
// Choose the point closest to the Explorer’s next frontier
Tnext = RpOp()
Apin = distance(Tpegt, F')
while not R.isEmpty() do
Teurr = Rpop()
if distance(reyr, F') < dpin then

Tnext = Tcurr
Amin = distance(Teyrr, F')
end
end
return(rpext)

Algorithm 2: Choosing a rendezvous point.
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(c) Office-like environments

Figure 4.10: Some further examples of rendezvous point calculation
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4.3 Introducing a Dynamic Hierarchy

4.3.1 Common Problems

Even with an improved rendezvous point calculation leading to more efficient explo-
ration, several instances were observed where the behaviour of the team was clearly

not as efficient as it could be:

1. Dead Ends. When an Explorer finishes exploring a room (or any dead end),
and its parent Relay is positioned at or near the entry, this Relay may remain
stationary while the Explorer retraces its path and starts making its way to
a new frontier. It would be more efficient for the two to switch roles; for the
Relay to become an Explorer (since it is closer to the next frontier) and for the

Explorer to now become the Relay.

An example is presented in Fig. 4.11a: Explorer S explores the room, but
reaches a dead end. The only open frontier is now at F}. Since relay R is closer

to Fi, it is of advantage for the two robots to swap roles.

2. Loops. When an Explorer completes a loop, it can happen that now the Relay
is closer to the next frontier than the Explorer. Rather than stop and wait for
the Explorer to turn around and pass it, it would make more sense for the Relay

to become an Explorer and for the Explorer to become its Relay.

F
T
e 3l
&R —— F
1 | (= ol
(a) Dead ends (b) Loops

Figure 4.11: Example scenarios where team behaviour is suboptimal. The magenta
square is the base station, magenta lines indicate team hierarchy.
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An example is presented in Fig. 4.11b: Explorer U has traveled clockwise
around the obstacle in the middle of the environment while relay 7" has followed.
Once the loop is closed, the only remaining frontier is at F5. 1" is now closer to
F5 than U, so it makes sense for the two to swap roles. T becomes the explorer

while U becomes the relay.

Multiple other situations arise that are variations on these examples.

4.3.2 Swapping Roles

To solve the problem of inefficient motion in dead-ends and loops, robots need to
swap roles and exchange places within the team hierarchy. Several different attempts
were made to solve this problem, and the swapping of roles is discussed in greater
detail in section 7.1. Here, only the eventually chosen solution is presented, namely

the “Role Swap Rule” (see Table 4.4).

Consider two robots A and B, each having destinations D4 and Dp, respectively. Let
~(u, v) represent the path cost from location u to location v in a given map. When u and v
are known, this value is easy to calculate using standard path planners (such as A*) on the
map. Suppose A and B have encountered one another and established a communication
link. If

max{y(A,Da),v(B,Dp)} > max{y(A,Dpg),v(B,D4)}

then let A assume B’s role, state, and location in the tree, and let B assume A’s role,
state, and location in the tree.

Table 4.4: The Role Swap Rule

This rule is applied equally to relays and explorers, both within the same branch
and across branches.

In short, the role swap means that two robots analyse their current goals and
check whether it would be faster if they switched roles. Therefore, the longest path
among the four paths computed is always eliminated. If a role swap occurs within a

single branch, this means that new information will travel faster from Explorers to
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the BaseStation. If it occurs across two separate branches, the role swap generally
has a load balancing effect (as described in greater detail in section 7.1).

Perhaps the best way to demonstrate this dynamic behaviour, and how it improves
the exploration effort, is by example: see Fig. 4.12 and the accompanying explanation
in Table 4.5. In this simple demonstration, three separate applications of the role swap
are applied: the swap in Stage I1I involves a relay and an explorer in the same branch,
the swap in Stage IV involves a relay and an explorer from separate branches, and
the swap in Stage V involves two relays in separate branches. Additional possible
applications of the rule exist, and the rule is applied in the same way to larger

hierarchies and longer branches.

4.3.3 Implementation in Practice

Implementing the role swap rule in practice is fairly straightforward, as long as several
key implementation issues are kept in mind. This section explains why each robot
needs to maintain two separate identification numbers, lists the information that
must be swapped, describes the actual role swap protocol, discusses how to deal with

oscillation, and lists all relevant parameters.

Two types of ID: static and dynamic

To allow role swaps while still maintaining a consistent hierarchy, each robot must
maintain both a static ID and a dynamic ID.

The static ID is assigned to each robot at the start of exploration, and never
changes, even if the robot swaps roles with a teammate. All robots maintain infor-
mation about their teammates, such as location and whether they are in range. This
information is related to the physical robot itself, and does not have any relation to

the robot’s position in the hierarchy. Thus it must be stored using the robot’s static

ID.
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Stage I: Four robots set out to explore an unknown environment. Initially, A and C are
relays, B and D are explorers. Following initial range scans, two frontiers are discovered
(Fy and Fy). By joint utility maximisation, B chooses to explore F; and D chooses to
explore F5.

Stage II: B explores F; and A follows B. The frontier F}; opens up into a bigger frontier
at F3. In the meantime D explores Fy and C' follows D. D reaches the end of the room,
and decides to rendezvous with C to relay new information back to base station. The
members of the team are still fully connected, although the connection to base station is
lost.

Stage III: B and A reach the limits of the team communication chain, and break from it
— B continues to explore, A continues to follow. Two frontiers open up (Fy and F5), and
B chooses to explore Fy. In the meantime, D and C have rendezvoused, and C has new
information to relay back to base station. However, D’s only frontier of interest is at F3
(D is not aware of A and B’s latest exploration knowledge since these have been out of
range). Since

maz{y(D, F3),v(C, Base)} > max{~(D, Base),v(C, F3)}

the role swap rule is applied, and C' and D trade positions in the tree. C is now an explorer
with Fj as its goal, and D is now its parent relay with the base station as its goal. C and
D agree on R; as the next rendezvous point.

Stage I'V: Enough new information has been gained by B, so A and B rendezvous and A
turns around to relay new information to the base station while B continues to explore.
However, A encounters C, on its way to explore F3. Since

maz{y(C, Fy), (A, Base)} > maa{y(C, Base),y(A, Fy)}
the role swap rule is applied, and C and A trade positions in the tree. C' becomes a relay

for B, while A becomes an explorer with D as parent relay.

Stage V: Now an explorer, A chooses the nearest frontier at Fi and starts to explore. D,
having relayed information to the base station, is on the way to rendezvous with its child
(now A) at Ry. C is on its way to the base station to relay new information. Since

maz{y(D, R1),v(C, Base)} > max{vy(D, Base),v(C, R1)}

the role swap rule is applied, and D and C trade positions in the tree. D becomes a relay
for B, and C' becomes a relay for A. D turns around to complete the task of relaying
information, while C' turns around to rendezvous with its child A at R;.

Stage VI: In the meantime, A and B have continued exploration of open frontiers and
fully explored the environment. Eventually all robots return to the base station.

Table 4.5: A description of the events in Fig. 4.12
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Figure 4.12: A demonstration of how a team hierarchy may change during an explo-
ration effort. The team hierarchy is presented to the right of each stage of exploration.
Dark parts of the map are unexplored, white parts have been sensed using range find-
ers. The base station is the purple square on the left. Coloured circles indicate agents’
respective communication ranges. A full explanation of the stages in this figure is
provided in Table 4.5.
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The dynamic ID specifies the exact location of a robot within the team hierarchy.
Dynamic IDs are assigned at the start of the exploration effort, but change every time
a robot swaps roles with a teammate. A robot looking for its parent or child will thus
be looking for a robot having a given dynamic ID, since its parent or child may have
switched roles unbeknownst to it.

Consider for example the case where robot A has to rendezvous with its parent
B. However, unknown to A, B has swapped roles with D. D now has B’s dynamic
ID number. Since A is looking for the dynamic ID only, and not a specific robot, A

finds D as its parent, and role-based exploration may proceed as expected.

Role swap message

The actual role swap itself involves the exchange of a role swap message that contains
all relevant information necessary for a role exchange. This message contains the

following information:

e dynamic ID (so that the robot knows its location in the hierarchy and can be

found by teammates);

role and current state;

child’s ID and child rendezvous (so that it can find its new child);

parent’s ID and parent rendezvous (so that it can find its new parent); and

current goal (so this does not need to be recalculated)

No other information needs to be exchanged; the above is sufficient for exploration

to proceed as normal after role swap.
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Role swap protocol

It is very important that two teammates swapping roles are on the same page; if one
robot decides to swap its role but the other does not, clearly confusion would ensue.
In practice this is achieved by one robot commanding the other to swap roles. In the
experiments presented in Chapters 5 and 6 this was achieved by having the robot
with the lower static ID give the command to the robot with the higher static ID; it
could be done the other way around as well, as long as one of the two teammates is
authorised to make the decision.

The full role swap process can be described as follows:
1. Robots A and B enter one another’s communication range

2. Robots A and B receive status and map updates from one another. The status

update includes for each robot its current position and its current goal.

3. Without loss of generality, assume that robot A has a lower static ID than robot
B (static IDs are unique). Robot A calculates the four path costs required by

the role swap rule, and determines whether a role swap would be advantageous.

4. If yes, robot A sends a role swap message (see above) to robot B. If it receives

a role swap message as a reply, the role swap occurs.

Avoiding oscillation

In rare cases, the role swap rule can lead to oscillatory behaviour by two teammates.
For example, consider the case of two robots deciding on whether to exchange roles
while moving past one another. It is possible that at the moment they start evalu-
ating the path costs involved, it is advantageous to exchange roles. However, if the
calculation takes time or if they are moving fast (or both), it is possible that once

the decision is made, the role swap is no longer advantageous. As a result, the team-
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mates may move past one another, decide to swap roles, turn around, move past one
another, decide to swap roles again, and so on.

There are two straightforward ways to prevent such oscillations. In the first,
oscillations can be circumvented by introducing a timeout on the rate of role swaps
a robot may undergo. As long as the timeout is at least as long as the replanning
interval used by the robots, oscillation is prevented. Consider robots A and B, who
have decided to swap roles while passing one another. If the rare case occurs where
the role swap turns out to be disadvantageous, they will both turn around and pass
one another again. However, since there is a timeout on role-swapping that is longer
than the timeout on replanning, they will replan before they consider swapping roles
again. Once they replan, they each have new goals and new path costs, and will
realise that they should not swap roles again, preventing oscillation.

A second, perhaps tidier, way to prevent oscillation is to introduce hysteresis into
the role swap mechanism. This can be achieved with a simple adjustment to the Role

Swap Rule:

Consider two robots A and B, each having destinations D4 and Dp, respectively. Let
~(u,v) represent the path cost from location u to location v in a given map. If

maz{y(A, Da), (B, Dp)} > a x max{y(A, Dp),7(B, Da)}

then let A assume B’s role, state, and location in the tree, and let B assume A’s role,
state, and location in the tree.

Table 4.6: A safer Role Swap Rule using hysteresis

In this safer Role Swap Rule, constant « is a small value greater than 1 (e.g.
1.1). Multiplying the maximum path cost of the scenario that would arise after a role
swap means that role swaps will occur only when there is a significant advantage to
switching roles, thus preventing oscillation.

Note that in this example a factor is multiplied to the right hand side of the

equation; a similar result could be achieved by adding a small constant. For example,
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if robot speeds are known, then the addition to the right hand side of the equation

of the maximum distance a robot might travel between replanning intervals could

achieve the same result.

Parameter space

Most planning, mapping and exploration algorithms have a large number of parame-

ters that can be adjusted to nudge the resulting behaviour in one direction or another

(depending on robot platforms involved, environmental factors, desirability of certain

behaviours, etc.).

The Role-Based approach presented in this chapter only depends on a small num-

ber of parameters:

n: where n is the exponent in the equation U(p;) = A(p;)/C"™(p;) (which
is used to calculate frontier polygon utilities, see Section 4.1.3). High values
of n lead to exploration of larger spaces (such as hallways), lower values of
n lead to exploration of nearby spaces (such as a series of rooms). For most
experiments, both in simulation and in reality, a value of 2 was chosen for n,
as this seemed to provide the ideal trade-off between exploring new, large areas

while not changing direction too often.

t: where ¢, represents the time interval for replanning. Deciding on how
often to replan is a common robotics problem. Replanning can be resource
intensive and can take time, especially when multiple frontier polygons need to
be found, paths need to be calculated to each, a skeleton of free space needs
to be determined, and so on. On the other hand, environments can change or
sudden factors can influence next decisions, so it is important not to wait too
long. A typical solution is to introduce a timeout on how often a robot may

replan. In the experiments conducted in simulation, replanning only occurred
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every ten simulation cycles, or when there were no more waypoints in the robot’s
current path (whichever came first). In the experiments conducted with real

robots, this timeout was set to five seconds.

e T and Ty: where T; and T, are thresholds used in the rendezvous point
calculation process (Algorithm 2). T} is used to add potential rendezvous points
when there are large gaps in the skeleton; 75 is used to remove potential ren-
dezvous points that are too close to other rendezvous points. Actual values for
these thresholds depend on how thick the distribution of potential rendezvous

points is desired, and on the resolution of the map.

e «: where « introduces greater or lesser degrees of hysteresis into the Role

Swap Rule, as described earlier in this section.

Various aspects of Role-Based Exploration are not described by specific parame-
ters but could nevertheless be “tuned” in one direction or another, as desired. For
example, the current implementation chooses a rendezvous point that is deep in the
explored environment, near the Explorer’s next intended area of exploration. As dis-
cussed at the end of Section 4.1.6, there is an inherent trade-off in the rendezvous
point selection. Choosing rendezvous points close to the BaseStation will mean that
new information is returned more frequently, but only small amounts of information
are gained each time. Choosing rendezvous points that are deep in th