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ABSTRACT
For many robotics applications (such as robotic search and
rescue), information about the environment must be gath-
ered by a team of robots and returned to a single, specific
location. Coordination of robots and sharing of information
is vital, and when environments have severe communication
limitations, approaches must be robust to communication
drop-out and failure. The difficulties are compounded in
dynamic environments, where paths previously believed to
be free can suddenly become blocked.

In this paper, we introduce a novel way of calculating
rendezvous points for robots to meet and share information.
Using role-based exploration, some robots continuously ex-
plore the environment while others ferry information back
and forth to a central command centre. Optimal rendezvous
point selection leads to more efficient exploration, and allows
robots to replan when one of them has unexpected obstacles
in its path.

Categories and Subject Descriptors
I.2.9 [Artificial Intelligence]: Robotics—Autonomous ve-
hicles; I.2.11 [Artificial Intelligence]: Distributed Arti-
ficial Intelligence —Intelligent agents, Multiagent systems;
I.4.10 [Image Processing and Computer Vision]: Im-
age Representation—Morphological

General Terms
Algorithms, Experimentation, Performance

Keywords
Robotics, exploration, multi-robot cooperation, limited com-
munication, search and rescue robots, role-based exploration,
rendezvous points, dynamic environments

1. INTRODUCTION
Advances in robotics and multi-agent systems mean that

robots will be used for an ever wider range of applications in
the near future. Such tasks include reconnaissance, surveil-
lance, exploration of environments inaccessible to humans
(e.g. underwater or in space), and missions in potentially
dangerous environments (e.g. bomb disposal or search-and-
rescue).

In this paper we are particularly interested in the robotic
search-and-rescue task, although our results are applicable

Figure 1: A partially explored environment: walls are black,
unexplored space is blue, explored (free) space is white.
Thinning on the free space allows for calculation of possi-
ble rendezvous points (green dots). By choosing the best
rendezvous points, robots can meet to exchange informa-
tion more efficiently, and can replan to meet at another ren-
dezvous point if one of them encounters unexpected obsta-
cles.

to various robotic tasks. Search-and-rescue robots are used
to explore environments after disaster scenarios (such as
earthquakes) that are otherwise not accessible due to risks of
secondary disaster, environmental hazards, or a lack of spa-
tial access for humans or dogs. The hope is that robots will
be able to efficiently explore and map disaster environments
and find locations and statuses of human victims, so that
human responders know where to focus their rescue efforts.

Currently, search-and-rescue robots are typically at least
40 - 60cm wide, long, and high, and are usually controlled
directly by a human operator. Promising approaches in-
clude track-based robots, snake robots, and flying robots.
As technologies improve and miniaturise, we believe that fu-
ture robotic search-and-rescue efforts will involve teams of
small rolling, crawling, or flying robots that autonomously
explore environments of interest together. Such teams will
require robust strategies for typical multi-robot team prob-
lems: team coordination, sharing of information, and limited
communication.



In search-and-rescue environments, the limited commu-
nication problem is particularly relevant as disaster envi-
ronments are likely to be full of obstacles and interference.
Moreover, the additional problem of dynamic environments
must be considered: unstable and burning rubble, for ex-
ample, may well shift or change as the exploration effort
unfolds.

In this paper we hope to make first steps in the direc-
tion of solving the following problem: how can a team of
agents, subject to limited communication, be coordinated to
(i) explore an unknown and possibly dynamic environment
as quickly as possible while (ii) relaying known information
back to a central command centre as quickly as possible?

Central to our approach is the use of role-based ex-
ploration, and the determination of optimal rendezvous
points. In role-based exploration, team members assume
one of two roles: exploring the far reaches of the environ-
ment, or relaying known information from explorers back to
the command centre. To coordinate efficient meetings be-
tween explorers and relays (for information exchange), calcu-
lation of optimal rendezvous (i.e., meeting) points is crucial,
and can significantly speed up the exploration effort.

While our experiments are an abstraction from the real-
world problem of robotic search-and-rescue, we hope that
our ideas and conclusions will be applicable to future robot
rescue teams, possibly as an extension of existing multi-
robot exploration algorithms. The results are also applicable
to other problems where information by a team of communi-
cating robots must be consolidated at a single location, such
as for example in underwater or planetary exploration.

This paper is structured as follows: In Section 2 we dis-
cuss related work. Section 3 describes in detail our approach,
including how we determine rendezvous points. Our simu-
lation framework and communication model are described
in Section 4, while our experimental results are outlined in
Section 5. Finally we discuss the ramifications of our work
in Section 6, and conclude in Section 7.

2. RELATED WORK
Multi-robot Exploration

Multi-robot exploration has received considerable atten-
tion in recent years but only a small number of approaches
have taken limited communication into account.

In early approaches, a line-of-sight constraint was used to
keep robots within communication range [3, 12]. This has
been extended to robots reactively choosing a direction that
will most likely keep them within sight of the rest of the
team [17].

Several authors propose multi-robot exploration strategies
based on market principles, in which robots place bids on
subtasks of the exploration effort [22, 8, 28, 21]. These bids
are typically based on values such as expected information
gain and travel cost to a particular location in the environ-
ment, and may be assigned in a distributed fashion among
team members, or by a central agent. When strength of
communication is factored into the bids, robots avoid areas
outside of communication range.

Another common strategy for robotic exploration is to
use frontiers [27], which can easily be extended for use by
multiple robots [5, 10, 18, 24]. Similar to bids described
above, utilities of individual frontiers may include a factor
related to likelihood of communication success, so robots are

less likely to explore areas that take them out of the team
communication range.

Further approaches include the use of ‘energy fundamen-
tals’ to maintain network connectivity [20], results from graph
theory to keep individual robots in ‘comfort zones’ [23] and
the application of synthetic ‘spring forces’ to keep robots
close to one another [16].

While several of these approaches have proven successful
in maintaining team connectivity during the exploration ef-
fort, they are usually limited by the constraint of having
to keep team members within communication range. Even
if members of a team are dispersed to the maximum extent
that their communication ranges allow, in large and complex
environments unexplored areas will remain.

A solution to this problem is to allow robots to autono-
mously explore beyond communication range limits. This
can be implemented in terms of ‘robot pack’ or clustering
behaviour, in which groups of robots stay close together as
they explore the environment [18, 21, 10].

However, little work has been done towards the typical
search-and-rescue problem of gathering information in a se-
verely communication-limited environment at a single loca-
tion as efficiently as possible.

Rendezvous points
In several robotic exploration approaches, shared know-

ledge communicated at meetings between multiple robots
is used for multi-robot localisation, although such meetings
are not explicitly planned [9, 13]. The term rendezvous itself
was introduced by Roy and Dudek in 2001 [19]. In their ap-
proach, robots wander through the environment and choose
suitable landmarks for rendezvous, returning to the most
suitable at a pre-arranged time.

Several authors have worked on the problem of efficiently
gathering multiple agents with limited visibility at a single
meeting point [2, 15], but in these approaches, exploration of
the environment is not a goal. The rendezvous problem has
also been phrased in terms of two agents entering a known
environment at separate locations and having to find one
another in minimal time [1]. We do not cover this prob-
lem here, however, since we are interested in applications
where agents know one another’s locations at the start of
the exploration effort, but the environment is unknown.

Robot rendezvous is most relevant to exploration approaches
in which individual robots (or groups of robots) are out of
one another’s communication range for extended periods of
time. Since little work has been done in this direction, ren-
dezvous selection and use remains a young field of study.

3. OUR APPROACH

3.1 Role-based Exploration
While most frontier-based exploration approaches lead to

quick and efficient exploration, they do not take into account
the need to relay new information back to a central com-
mand centre in communication-limited environments. To
take advantage of frontier exploration’s strengths while still
maintaining as well connected a robot team as possible, we
propose role-based exploration. We present a brief overview
here; interested readers are referred to [7] for a more thor-
ough description.



(a) Explorers (b) Relays

Figure 2: State transition diagrams

In role-based exploration each member of the team is as-
signed one of two roles:

1. Explorer. Explorers are meant to explore the farthest
reaches of the environment. To communicate their
findings, they return periodically to previously agreed
rendezvous points where they pass their knowledge to
a relay.

2. Relay. Relays ferry information back and forth be-
tween explorers and the command centre. This is a-
chieved by meeting the explorer periodically at afore-
mentioned rendezvous points, exchanging all relevant
knowledge, and then returning to the command cen-
tre. If a relay discovers information about the en-
vironment while relaying, this is added to the team
knowledge, but exploration is only a by-product of the
relay’s movement.

3.2 Team Hierarchy and State Transitions
The team hierarchy is determined in advance. There may

be multiple relays between the command centre and an ex-
plorer, and a relay may serve more than one explorer (see
Figure 3). We are interested in dynamic team hierarchies as
well, but leave this as future work for now.

State transition diagrams for Explorers and Relays are
presented in Figure 2. Explorers’ GiveParentInfo state
(which coincides with Relays’ GetInfoFromChild state) is
particularly relevant to this paper: it is in this state that
an Explorer plans next exploration steps, recalculates pos-
sible rendezvous points, and tells his parent relay where to
rendezvous next.

Note that an Explorer and Relay do not need to reach
rendezvous to transition to the next state. If there is a
chance meeting between the two earlier than expected, it is
advantageous to replan at that moment, rather than wait
until both reach rendezvous.

3.3 Teammate Modeling
When two teammates, an Explorer and a Relay, meet,

they exchange all relevant knowledge of the environment.
After exchange, each robot will have the same map, and
know exactly what its teammate knows at that point in time.
Since relays’ movement is highly predictable and both robots
use the same path planner, the Explorer can calculate ex-
actly how long the Relay will need to return to the Command
Centre (or its parent relay), turn around, and make its way

Figure 3: A possible hierarchy for role-based exploration.
Explorers are blue, relays are red. The command centre
(top) is the root of the hierarchy tree.

back to the next jointly agreed rendezvous point. Thus the
Explorer knows exactly how much time it has to continue
exploring before having to turn around and rendezvous once
again, and subsequent meetings can be timed in such a man-
ner that neither Relay nor Explorer waste time waiting for
the other to return to the rendezvous point – both should
reach the rendezvous point at almost the same time.

Moreover, if the Explorer stores the map exchanged at
rendezvous separately from its own evolving map, then it
can at any point predict the Relay’s likely position, even
when not in communication range (since the Relay’s map
is unlikely to change much). Explorer and Relay can also
agree on fallback rendezvous points, in case the preferred
rendezvous point can unexpectedly not be reached. This
has significant implications for rendezvous in dynamic envi-
ronments, discussed in more detail in section 3.6.

3.4 Frontier Assignment
Assuming that the team hierarchy has been determined

and each robot assigned a role, how does exploration actu-
ally take place? For this, we apply simple frontier explo-
ration [27], which is among the most popular and promising



approaches today. Frontier exploration is heavily influenced
by how utilities are calculated for individual frontiers. For
every frontier f we calculate a utility U(f) as follows:

U(f) = A(f)/Cn(f)

where A(f) is the area of frontier f , C(f) is the path cost
from the robot to that frontier, and exponent n determines
the exploration behaviour. High values of n lead to explo-
ration of nearby frontiers (such as rooms) whereas low values
mean that robots are more likely to pursue larger frontiers
(such as hallways) [25]. For experiments reported later in
this paper we use n = 2.

An additional consideration is that it is undesirable to
send two robots into the same frontier. Elsewhere segmen-
tation and the Hungarian method have been proposed [26],
but we use a simple agent-frontier assignment algorithm de-
tailed in [25]; in short, every robot determines frontier utili-
ties for itself and its nearby teammates, and iteratively cal-
culates a robot to frontier assignment that maximises joint
utility. While this method is not necessarily optimal, it is
fast, and in our experience entirely sufficient for distributed
exploration.

3.5 Selection of Rendezvous Points
It turns out that this rendezvous point selection is an im-

portant factor in the exploration effort, and good rendezvous
point selection both drives the exploration effort deep into
the environment while minimising time required to commu-
nicate information up the communication chain. In our pre-
vious work, the Explorer stored its own current location at
the moment that it turned to meet a Relay for use as the
following rendezvous point. This did lead to deeper and
deeper exploration of the environment, as with each ren-
dezvous the Relay had to come deeper and deeper into the
environment to meet the Explorer. However, in certain cir-
cumstances, rendezvous points chosen in this manner were
less than favourable and led to inefficiencies (for example,
when an Explorer chose a rendezvous point in an already
fully explored part of the environment and had to backtrack
unnecessarily to meet the Relay).

Here we propose a novel approach: subsequent rendezvous
is calculated by the Explorer while it is in communication
range of the Relay, and uses thinning on the free space in the
map. Thinning is a technique from digital image processing
that is meant to reduce a shape to its skeleton by making
the shape as thin as possible while keeping it connected and
centred. There are many parallels between thinning, skele-
tonisation, and Voronoi diagrams. A wide range of thinning
techniques have been proposed since the 1960’s, having var-
ious advantages or disadvantages (for a review, see [14]).

In our approach we use Hilditch’s algorithm [11]1, since
it is fast, returns a connected skeleton, and is easy to im-
plement. A typical skeleton calculated using Hilditch’s al-
gorithm is presented in Figure 1.

Hilditch’s algorithm requires the calculation of a neigh-
bour traversal function T (p1), described in Figure 4. This
function can also be used to find junction points in the skele-
ton: any point p1 that is a junction in the skeleton will have
T (p1) ≥ 3. A skeleton may contain long stretches without

1For a useful tutorial on how to implement Hilditch’s
algorithm, see http://cgm.cs.mcgill.ca/~godfried/
teaching/projects97/azar/skeleton.html.

Figure 4: Traversal function T (p1) is the number of 0,1 pat-
terns in the sequence p2, p3, p4, p5, p6, p7, p8, p9, p2

junction points, for example along a hallway – to fill out the
resulting graph, we iterate over all points in the skeleton
and add those that are a minimum distance from all exist-
ing rendezvous points (filling). On the other hand, complex
parts of the environment may contain a large number of
junction points in a small area – to simplify calculations we
choose only one point per given density (pruning). This
gives a nice set of possible rendezvous points, distributed
fairly evenly over the known environment and including all
junctions. The full algorithm for rendezvous point calcula-
tion is presented in Algorithm 1.

List skeletonPoints = hilditchThinning(map);
List rendezvousPoints = new List;
foreach sp ∈ skeletonPoints do

if neighbourTraversal(sp) ≥ 3 then
rendezvousPoints.add(sp);

end

end
foreach sp ∈ skeletonPoints do

boolean addToList = true;
foreach rp ∈ rendezvousPoints do

if sp.distanceTo(rp) < threshold T1 then
addToList = false;
break;

end

end
if addToList then

rendezvousPoints.add(sp);
end

end
foreach rp1 ∈ rendezvousPoints do

foreach rp2 ∈ rendezvousPoints, rp2 6= rp1 do
if rp1.distanceTo(rp2) < threshold T2 then

rendezvousPoints.remove(rp1);
end

end

end
Return rendezvousPoints;

Algorithm 1: Calculation of rendezvous points.

Now that we have a list of potential rendezvous points,
which is the best one? We examined a number of different
utilities and combinations thereof: estimated communica-
tion range at the rendezvous point, proximity to nearest
frontiers, and path cost. Since we want the Relay to follow
the Explorer, however, it turned out that the most impor-
tant consideration is the Explorer’s next choice of frontier.
In other words, placing the next rendezvous deep into the
next frontier that the Explorer plans to enter, while ensur-
ing that the rendezvous point has a strong communication
range, gave the best results. (A large communication range
is a desirable characteristic for a rendezvous point since as
two robots approach it, they will be able to detect and com-



municate with one another earlier. Communication range
at a particular point can be easily estimated using the com-
munication model described in section 4.2).

More specifically, in our implementation we choose a ren-
dezvous point by considering only a small number of points
near the Explorer’s next frontier of choice and choosing the
one having highest neighbourTraversal value (since this is
the most important junction). If multiple points have equal
neighbourTraversal values, we choose the one with the best
estimated communication range. The full process is outlined
in Algorithm 2.

List rendezvousPoints = rvCalculation (Algorithm 1);
List chosenPoints = new List;
Point frontierCentre =
agent.chosenFrontier.getCentre();
int highestDegree = 0;
foreach rp ∈ rendezvousPoints do

if rp.pathCost(frontierCentre) < threshold T3 then
if rp.degree > highestDegree then

chosenPoints = new List;
chosenPoints.add(rp);
highestDegree = rp.degree;

end
else if rp.degree = highestDegree then

chosenPoints.add(rp);
end

end

end
double bestRange = 0;
Point bestPoint = new Point;
foreach cp ∈ chosenPoints do

if CommModel.rangeEstimate(agent.occupancyGrid,
cp) > bestRange then

bestRange = Comm-
Model.rangeEstimate(agent.occupancyGrid,
cp);
bestPoint = cp;

end

end
Return bestPoint;

Algorithm 2: Choosing the best rendezvous point.

3.6 Replanning in Real-time and Dynamic En-
vironments

Real-time
On a modern computer, selection of a rendezvous point

typically takes a few hundred milliseconds (see Table 1).
Hilditch thinning, generation of a list of rendezvous points,
and selection of the final point take longer as the effort pro-
gresses, as there is more free space, a larger skeleton, and
longer paths to compute. Choosing a frontier takes less time
as the effort progresses since the number of open frontiers
decreases.

Exact computation times are highly dependent on the
specific approach, and numerous optimisations are possi-
ble (for example, considering only a subset of all frontiers
when choosing a frontier). Nevertheless, while real search-
and-rescue scenarios are likely to involve larger occupancy
grids and environments extending across multiple levels, we
believe that as robots are equipped with better and better

Early in the exploration effort (20% of env. explored)
Hilditch thinning 168ms

Generation of rendezvousPoints list 15ms
Choosing a frontier 255ms

Deciding on the exact rendezvous point 128ms
Total 566ms

Late in the exploration effort (80% of env. explored)
Hilditch thinning 380ms

Generation of rendezvousPoints list 30ms
Choosing a frontier 98ms

Deciding on the exact rendezvous point 253ms
Total 761ms

Table 1: Typical computation times for elements of the ren-
dezvous point selection process in an 800 x 600 occupancy
grid involving four robots (two explorers, two relays), using
a 2.4GHz, 2GB machine

processors, this method would scale well and be possible to
compute in real-time.

Dynamic Environments
At this point we have an efficient method for calculation of

rendezvous points, and each robot has a fairly accurate pic-
ture of where its parent relay is likely to be. What happens
in dynamic environments? Among the possible problems
that arise in dynamic environments, we consider two cases:

1. A parent finds that the path to rendezvous with its
child becomes blocked

2. A child finds that the path to rendezvous with its par-
ent becomes blocked

We will look at the case where the parent is a Relay and
the child is an Explorer (although interaction between two
relays connected in the team hierarchy would be the same).

Case 1: Relay cannot reach rendezvous
In the first case, the Relay finds that it cannot reach ren-
dezvous. It recomputes to find the next best rendezvous
point (within a maximum distance threshold), reaches this
point, and waits, hoping that the Explorer will find it.

The Explorer reaches the originally agreed rendezvous point,
and waits. If after a specific amount of time the parent Re-
lay has not arrived, the Explorer must assume that it could
not reach rendezvous, and must replan. The Explorer will
have stored the map known to its parent Relay at the previ-
ous rendezvous between the two. Since a Relay ferries back
and forth between rendezvous and the command centre, its
map will not have changed significantly. Thus the Explorer
can predict which new rendezvous point the Relay is likely
to choose (or if a fallback rendezvous point has been agreed
on, it can choose this as a target).

Now, the Explorer must reach this new rendezvous point.
If it is reachable by path planning on the Explorer’s map,
the problem is solved and the Explorer goes to the new
rendezvous. If, however, there is currently no path to the
new rendezvous, the Explorer continues with frontier explo-
ration, but significantly favouring frontiers that are closer to
the new rendezvous point. This can be integrated into the
frontier utility equation in terms of a proximity factor.

This does not guarantee that Relay and Explorer will meet



again (indeed, in some cases a robot may become entirely
trapped), but it does allow them to make a second attempt.

An alternative solution is for both Relay and Explorer to
find their way to the next highest point in the communica-
tion chain (the Relay’s parent relay) – we hope to examine
this scenario in future work.

Case 2: Explorer cannot reach rendezvous
Let’s assume that the Explorer has had his return path to
the rendezvous point blocked. In this case, the Relay can
still reach the originally agreed rendezvous point, and waits
there.

The Explorer, on the other hand, does not have a path to
the rendezvous. Again, it tries to find an alternative route,
by favouring frontiers that are closer to the originally agreed
point.

Hopefully the Explorer finds an alternative route. If not,
and if a significant amount of time has passed without ren-
dezvous, the Relay can either return up the chain of commu-
nication (to its parent), or convert to becoming an explorer
itself.

4. SIMULATION ENVIRONMENT

4.1 Simulator Framework
To implement our multi-robot exploration approach and

compare it with other existing approaches, we have devel-
oped our own JAVA-based simulation environment, the Multi-
Robot Exploration Simulator (MRESim). MRESim allows
for full configuration of environments, either manually or by
import of binary image. The simulation framework handles
collisions, sensor data and communication as follows: At ev-
ery time step, the simulation framework requests from each
agent a new desired location. If the location is valid, the
agent is moved to this location, and new sensor data is sim-
ulated and sent to the agent. Following the movement of
all agents, the communication model is used to determine
whether any agents are within range of one another, either
directly or via multi-hop. If yes, all relevant knowledge of the
environment is shared between all communicating agents.

At any point a simulation may be paused and agents’ in-
dividual knowledge bases may be examined. This includes
all known free space, safe space, frontiers, calculated paths,
communication ranges, map skeleton and rendezvous points.

4.2 Communication Model
We have implemented and tested a variety of communi-

cation models in our simulations. For experiments reported
here we use a standard path loss model with a wall attenu-
ation factor as described in [4]:

S = Pd0 − 10×N × log10(
dm

d0
)

{
nW ×WAF nW < C
C ×WAF nW ≥ C

where Pd0 is the reference signal strength, N is the path
loss rate, dm is the distance, d0 is the reference distance,
nW is the number of obstructing walls, WAF is the wall at-
tenuation factor and C is the maximum number of walls to
consider. This model is widely used in simulation, including
the popular USARSim simulator [6]. A typical communica-
tion range for an agent is displayed in Figure 5.

Figure 5: Typical communication range for an agent using
the communication model described in section 4.2

4.3 Noise
Currently, we assume perfect sensor data and localisation.

We are well aware that this is not realistic and real-world
systems need to cope with sensor noise and inaccurate maps.
However, we believe that our results are useful nevertheless,
because:

• steady advances in robotic mapping are leading to ever
more accurate mapping techniques

• even with imperfect localisation, the approach is likely
to work. When rendezvous points with large communi-
cation range are chosen, teammates do not need to ren-
dezvous at precise locations, they merely need to en-
ter the communication range of the rendezvous point,
which leaves room for error. Once they meet, they can
relocalise based on one another’s maps. The shared
map itself does not need to be perfect; it’s more im-
portant is that both robots share the same frame of
reference.

• this is an early work examining some of the high-level
aspects of multi-robot exploration under limited com-
munication. We hope to take the results from these
simulations and test the successful methods in more
noisy, realistic simulation environments (such as US-
ARSim [6]) in the near future.

5. RESULTS

5.1 Static environment
To examine whether the new method for calculating ren-

dezvous points improves exploration efficiency, we ran three
algorithms and compared results. The three approaches
were:

A. Frontier Exploration.
Normal frontier-based exploration without concern for
communication range limits. Robots choose frontiers
according to the method in section 3.4, and don’t re-
turn to the ComStation until the whole environment
has been explored.

B. Role-based Exploration, simple rendezvous point
calculation.
Role-based exploration, without the novel method for



rendezvous calculation. Explorers choose their current
location as subsequent rendezvous points.

C. Role-based Exploration, advanced rendezvous
point calculation.
Role-based exploration, using the method for rendezvous
calculation detailed in section 3.5.

We compared these three approaches in office-like, open,
and cluttered environments. We use two performance met-
rics to compare the methods:

1. Total area explored. We use the union of the area ex-
plored by each robot.

2. Total knowledge of the environment at the command
centre. Since the goal is to return all information to
human responders at the point of entry in a search-
and-rescue scenario (and since known information that
doesn’t reach human responders is useless), this metric
is of particular interest.

The full details of these experiments for runs involving a
team of four robots (two explorers, two relays) are presented
in Figure 6. Frontier exploration leads to faster coverage
of the environment in both office-like and cluttered envi-
ronments. However, this advantage is not noticeable at the
command centre – it is clear that both role-based approaches
are significantly better at relaying new information back to
the command centre in all three types of environments.

The novel rendezvous point calculation method proposed
in this paper leads to significantly more efficient exploration
than the previous rendezvous point calculation – the percent
knowledge gain is outlined in Table 2.

Environment type % gain
Office-like 9.43
Open 9.64
Cluttered 1.12

Table 2: Overview of improvement of novel rendezvous point
calculation over previous method, in terms of percentage of
exploration known at the command centre. More extensive
experimental results are presented in Figure 6.

5.2 Dynamic environment
To examine our proposed solution to problems of dynamic

environments, we spontaneously let obstacles and walls ap-
pear in our testing environments. An example of a ‘Case
1’ situation (Relay cannot reach rendezvous) is presented in
Figure 7.

In this case the Relay reverted to the junction point as ex-
pected from Algorithm 2. Beta could predict Alpha’s choice
and pursued frontiers close to the new rendezvous point. In
all of our initial experiments, teammates were able to find
one another again after being blocked off. We hope to ex-
amine these ideas in more detail in future work.

6. DISCUSSION AND FUTURE WORK
While results presented here are preliminary, the role-

based approach and rendezvous point selection methods pre-
sented here show promise regarding future robotic applica-
tions such as robotic search-and-rescue.

The novel rendezvous point selection method means that
role-based exploration almost matches frontier-based explo-
ration in terms of speed of exploration, while significantly
outperforming it in terms of returning knowledge to a cen-
tral location. Most of today’s multi-robot exploration ap-
proaches keep team members within range of one another,
but for severely communication limited environments, other
methods such as these will be crucial.

As robots are likely to be used for exploration of larger and
larger areas, methods need to scale up in terms of memory
requirements and computation time. The rendezvous selec-
tion process presented here is easy to implement and fast,
and we believe that it could be applied to multi-level maps
as well.

However, much work remains to be done: the noise and
localisation assumptions must be relaxed, and more realistic
simulations conducted. Experiments need to be conducted
with larger numbers of robots. There are numerous potential
extensions to the role-based approach, such as the develop-
ment of dynamic hierarchies or the deployment of RFID tags
or motes to aid in the exploration process. We are also in-
terested in the fusion of aerial data (e.g. overhead cameras)
and ground data (e.g. rangefinders), and the use of aerial
robots to create a communication infrastructure for ground
robots. We hope to apply some of the ideas presented here
to such scenarios in the future.

7. CONCLUSIONS
For many robotic applications, information about an envi-

ronment must be gathered by a team of robots and returned
to a central location. In robotic search-and-rescue, this cor-
responds to the human responders’ point of entry. Using a
team of robots for such a task brings up problems of team
coordination, knowledge sharing, and communication. Par-
ticularly in search-and-rescue scenarios, communication can
be severely limited and robust strategies must be devised
that take this into account.

We have proposed Role-based Exploration, in which robots
either explore the deep reaches of the environment, or ferry
information from explorers up the communication chain to
the central command centre. While purely frontier based
methods cover an environment faster, role-based approaches
allow for information to reach human responders more quickly
and more often.

Explorers and relays must rendezvous to exchange infor-
mation and the selection of rendezvous points turns out to
have a significant effect on the exploration effort. We pro-
pose a method from digital image processing, thinning, to
skeletonize the map. This skeleton can be used to find an
even distribution of possible rendezvous points, including
those found at junctions. By careful selection of rendezvous
points (close to future exploration areas), exploration be-
comes significantly more efficient. These rendezvous points
can be used for replanning when unexpected changes in
the environment occur. This could be of great use in dy-
namic environments such as those encountered in search-
and-rescue scenarios.

While role-based exploration is in an early stage, we be-
lieve that certain applications will require explicitly planning
for autonomous exploration beyond communication range
limits. We hope the ideas presented here are an early step
in that direction, and may be used on their own or as ex-
tensions of existing approaches in the near future.
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(a) Three environments used for testing: office-like, open, and cluttered
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(b) Results in an office-like environment: % of environment explored (left) and % known at command centre (right)
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(c) Results in an open environment: % of environment explored (left) and % known at command centre (right)
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(d) Results in a cluttered environment: % of environment explored (left) and % known at command centre (right)

Figure 6: Evaluation of performance metrics after running algorithms A, B and C in 3 different types of environments



(a) A sudden wall (previously not there) blocks Alpha from
reaching the rendezvous point (yellow). Beta waits a specific
amount of time for Alpha to appear.

(b) Alpha recalculates, and chooses the rendezvous point hav-
ing highest degree (a junction point). Beta recalculates, as-
sumes Alpha will head for the same junction point, and pursues
frontier exploration with a preference for frontiers near the new
rendezvous point.

(c) Alpha and Beta meet at the new rendezvous point and
exploration can proceed as normal.

Figure 7: Use of rendezvous points to deal with unexpected obstacles in dynamic environments


