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Abstract— Object recognition is a well studied field of com-
puter vision, and has been applied with success to a variety of
robotics applications. However, little research has been done
towards applying pattern recognition techniques to robotic
search and rescue. This paper describes the development of
an object recognition system for robotic search and rescue
within the USARSim simulator, based on the algorithm of Viola
and Jones. After an introduction to the specifics of the object
recognition method used, we give a general overview of how
we integrate our real-time object recognition into our controller
software. Work so far has focused on victims’ heads (frontal
and profile views) as well as common objects such as chairs
and plants. We compare the results of our detection system
with those of USARSim’s existing simulated victim sensor, and
discuss the relevance to real search and rescue robot systems.

I. INTRODUCTION

The primary goal of robotic search and rescue is to
explore a disaster zone and provide as much information
as possible on the location and status of survivors. While
the development of advanced and robust robot platforms and
systems is essential, high-level problems such as mapping,
exploration and multi-agent coordination must be solved as
well. Development of such high-level techniques is the goal
of RoboCup’s Virtual Robots competition. This competition
uses USARSim as a basis for its simulations due to this
simulator’s high quality image data and rendering.

Since the primary goal of robotic search and rescue is
finding victims, a simulated robot rescue team must be
able to complete this task in simulation. In real rescue sys-
tems, identification of victims is often performed by human
operators watching camera feedback. To lower the burden
on teams using USARSim for rescue systems research, a
‘VictimSensor’ has been developed for the simulator that
mimics recognition of victims in real systems [1]. Modeled
after template based human form detection, this sensor must
be associated with a camera and performs line-of-sight calcu-
lations to the victim. It starts reporting victims at a distance
of about 6 metres, and its accuracy improves with increased
proximity. However, in this paper we report on work-in-
progress towards providing a fast vision-based detector as an
alternative, based on the work of Viola and Jones. The hope
is that this will provide a more realistic simulation of real-
world victim detection, and bring USARSim-related research
one step closer to reality.

A secondary goal of search and rescue efforts is to produce
high quality maps. One of the reasons to generate a map is to
convey information, and this information is often represented
as attributes on the map. In addition to victim information,

useful maps contain information on the location of obstacles
or landmarks, as well as the paths that the individual robots
took.

With a view to improving map quality, we have developed
a system for the automated labeling of recognisable items in
USARSim. In robotics, there is often a need for a system
that can locate objects in the environment – we refer to this
as ‘object detection’. Our detection system exploits the high
quality image data from USARSim which allows for accurate
classifiers to be trained with a relatively low false positive
rate. Using images from USARSim as training data, we have
trained various different classifiers to detect various objects,
including victims.

The paper is structured as follows. Section II describes
related work in object recognition and mapping. Section III
provides an overview of our system, including the object
detection method used and the training process. In Section
IV we detail the process of integrating object detection
and mapping into our controller software. In Section V we
present preliminary results. Several possible extensions to
our object detection systems exist. Some of these are detailed
in Section VI followed by concluding remarks in Section VII.

II. RELATED WORK

Object recognition is a well-studied field of computer vi-
sion. Swain and Ballard [2] first proposed colour histograms
as an early view-based approach to object recognition. This
idea was further developed by Schiele and Crowley [3] who
recognised objects using histograms of filtered responses. In
[4], Linde and Lindeberg evaluated more complex descriptor
combinations, forming histograms of up to 14 dimensions.
Although these methods are robust to changes in rotation,
position and deformation, they cannot cope with recognition
in a cluttered scene.

The issue of where in an image to measure has an impact
on the success of object recognition, and thus the need for
‘object detection’. Global histograms do not work well for
complex scenes. Schneiderman and Kanade [5] were among
the first to address object categorisation in natural scenes, by
computing histograms of wavelet coefficients over localised
object parts. In a similar approach, the popular SIFT (scale-
invariant feature transform) descriptor [6] uses position-
dependent histograms computed in the neighbourhood of
selected image points.

In recent years there has been increasing interest in using
object detection in SLAM (simultaneous localisation and
mapping) to provide information additional to that provided



by laser scans. Such an approach is denoted as visual SLAM
(vSLAM). Cameras have an advantage over lasers in that
they can offer higher amounts of information and are less
expensive. Different methods have been used to extract visual
landmarks from camera images. Lemaire and Lacroix [7] use
segments as landmarks together with an Extended Kalman
Filter-based SLAM approach. Frintrop et al. [8] extract
regions of interest using the attentional system VOCUS.
Others [9] have used SIFT descriptors as landmarks; Se et al.
[10] and Gil et al. [11] track the SIFT features in successive
frames to identify the more robust ones; Valls Miro et al. [12]
use SIFT to map large environments. Davison and Murray
[13], and Hygounenc et al. [14] use Harris Point detectors as
landmarks in monocular SLAM. Finally, Murillo et al. [15]
propose a localisation method using SURF keypoints.

Jensfelt et al. [16] integrate SLAM and object detection
into a service robot framework. In their system, the SLAM
process is augmented with a histogram based object recog-
nition system that detects specific objects in the environment
and puts them in the map generated by the SLAM system.
Later the robot is able to assist a human when he/she wants to
know where a particular object is. This situation is concerned
with the problem of detecting a specific object as opposed
to a general category of objects.

To the authors’ knowledge, little work has been done on
integrating object detection techniques into high fidelity sim-
ulation applications such as USARSim. For the 2007 Virtual
Robot Competition Visser et al. [17] used a colour histogram
approach for victim detection. A 3D colour histogram is
constructed in which discrete probability distributions are
learned. Given skin and non-skin histograms based on train-
ing sets it is possible to compute the probability that a given
colour belongs to the skin and non-skin classes. A drawback
of this approach is that in unstructured environments there
is no a priori data on the colours present in the environment,
which could result in a large number of false positives. In
this paper we focus on a more advanced method of detecting
general classes of objects in USARSim, and putting them
into the environmental map as the exploration effort unfolds.

III. SYSTEM OVERVIEW

Viola/Jones Algorithm: The method we use is based on
Viola and Jones’ original algorithm for face detection [18],
which is the first object detection framework to provide
accurate object detection rates in real time. Used in real-time
applications, the original detector ran at 15 frames per second
on year 2000 hardware; it is therefore suitable for object
recognition in robot simulation. We also use this method
because it is suitable for detecting objects in complex scenes
and under varying lighting conditions, which is typical of
robot rescue scenarios.

The method uses a variant of the AdaBoost algorithm
for machine learning which generates strong decision tree
classifiers from many weak ones. The weak learners are
based on features of three kinds, all of which can be
individually computed quickly at frame rates. However for
a 24×24 pixel sub-window there are more than 180,000
potential features. The task of the AdaBoost algorithm is
to pick a few hundred of these features and assign weights

to each using a set of training images. Object detection is
then reduced to computing the weighted sum of the chosen
rectangle features and applying a threshold. Thus, although
training of the classifiers takes a lot of computer time, the
resultant classifiers can be run very quickly.

Cascade of Boosted Classifiers: We adopt a fast approach
used in [19] where we cascade many such detectors, with
more complex detectors following simpler ones. Input (an
image from a robot’s camera) is passed to the first detec-
tor which decides true or false (victim or not victim, for
example). A false determination halts further computation;
otherwise the input is passed along to the next classifier
in the cascade. If all classifiers vote true then the input is
classified as a true example. A cascade architecture is very
efficient because the classifiers with the fewest features are
placed at the beginning of the cascade, minimising the total
computation time required.

Training classifiers: For each classifier, our training set
consisted of several thousand 400×300 images taken from
many different USARSim worlds. In the positive examples
(i.e. images containing the object of interest), the object
was manually tagged with a bounding box and the location
recorded in an annotation file. Ideally each bounding box
should have the same scale. In addition to improving clas-
sification accuracy, this makes it easier to estimate the real
world location of detected objects. For faces we used square
bounding boxes.

A major issue with accurate object detection is the effect
of different viewpoints on how an object looks. For this
reason our training set contained images of objects from
many different angles.

Training was carried out over several weeks using the
popular open source computer vision library OpenCV1. To
greatly speed up the process we employed the use of a 528
core SGI-ICE cluster at Oxford University’s Supercomputing
Centre (OSC), as described in the appendix. In the initial
phase separate classifiers were trained for frontal and profile
views of heads, both at close range and at further distances.
The larger the training set the better; in particular it helped
to have a very large number of negative examples. The
finished detectors contain a few thousand nodes each, with
each classifier having depth of a few tens of nodes. For
comparison, classifiers were also then trained for common
obstacles found in USARSim environments, such as chairs
and potted plants.

We found that the false positive rate can be reduced by
using images that were misclassified in one stage as negative
examples for successive stages. Our initial face detectors
were incorrectly identifying wheels of cars quite often. When
we used images of car wheels as negative examples in the
training set, the rate of false alarm went down. An example
of successful detections, along with one false positive, are
shown in Figure 1. (To date the rate of false positives seems
acceptable to us for a Robocup Rescue scenario, given that
they would presumably then be screened by the operator;
however the system is yet to be tested under competition
conditions.)

1http://sourceforge.net/projects/opencvlibrary/files/
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Fig. 1. Our face detector can recognise faces at greater distances than the
VictimSensor. Some detections are false positives, but these can be used as
negative examples in subsequent levels of training.

IV. INTEGRATION OF OBJECT DETECTION &
MAPPING

A key competence for a mobile robot is the ability to build
a map of the environment from sensor data. For SLAM we
use a method developed by Pfingsthorn et al. [20], inspired
by the manifold data structure [21], which combines grid-
based and topological representations. The method produces
highly detailed maps without sacrificing scalability. In this
section we describe how we augment our map with the
location of objects.

Fig. 2. An object has been detected by the robot from three different
locations. The position estimate can be improved by triangulation.

Finding the position of objects: Each detector is defined
within a single small XML file which is read by a robot’s
camera sensor; the detector is scanned across the image at
multiple scales and locations, using code from the OpenCV
library. When an object is detected, the image is saved
together with the location of the object in the image and the
robot’s current pose. The location is taken to be centre of the
bounding box. Using the size of an object’s bounding box as
a gauge of its distance from the robot and its angle relative
to the robot, an accurate position estimate is calculated. If
the same object is detected from several camera locations the
position estimate can be improved by triangulation (Figure
2). This is then placed in the map. An annotated example of
a final map is shown in Figure 3.

A position estimate can be quite inaccurate if the bounding
box does not fit the object’s boundaries closely, since our
calculations are based on the real world dimensions of an
object.

Multi-robot object detection: Using USARSim’s Multi-
View we can extend our object detection system to multiple
robots exploring the environment simultaneously. In this way
each robot has its own object detection capability. Ideally the
resolution of each subview should be no lower than that of
the training images.

Re-detection of objects: If a newly detected object is
within suitably close range of an existing object already
detected, this suggests that it is the same object. The position
estimate is made more accurate using triangulation. Re-
detection is key to the accuracy of our position estimates. Us-
ing triangulation, our position estimates are generally within
1 metre of ground truth. Moreover, re-detection helps us to
deal with false positives. Detections occurring only within
one frame are likely to be false positives, whereas repeated
detections in multiple frames increase the confidence that the
detection is correct.

V. RESULTS

Our object detection system is a work in progress. How-
ever, initial results are encouraging, and providing false alarm
rates can be reduced, object detection shows promise for use
in both high fidelity simulators like USARSim and real robot
rescue systems.

Classification accuracy: We tested our detector in several
standard USARSim worlds, including the CompWorld and
Reactor environments, using multi-robot teams. Figure 4
shows ROC curves for each of our classifiers, and Figure 5
shows some other examples of faces that have been correctly
identified by our system, even though they were not detected
by the simulated VictimSensor.

Results for faces and plants have detection rates of more
than 80% (for some more examples, see Figure 6). However,
false alarm rates increase with detection rates. Given our
experience now with training for faces on the supercomputer
we intend to soon re-visit the issue of training for other
objects.

Fig. 5. Four other successful detections of faces.

Our results for hands are less impressive than those for
faces and plants. We surmise that there are two reasons for
this: firstly, hands come in a wide range of varying poses,
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Fig. 3. A completed map together with automatically saved images of detected objects. Green line is the robot’s path, orange stars are position estimates
and red dots are actual positions.

Fig. 4. ROC Curves showing the performance of our object detection system.

from outstretched to clenched fists to hands that are waving.
It is therefore difficult to extract the salient features. Faces,
conversely, exhibit common features which can easily be
learned by a classifier. Plants, particularly the generic potted
plants in USARSim, tend to be (vertically) rotation invariant
and have the same general characteristics. Secondly, our hand
classifier was one of the first classifiers to be trained, before
we had access to the supercomputer, so we didn’t use as
large a training set as would have been optimal.

Detection time: To save computation time our detection
module searches for objects every n (say, 2 ≤ n ≤ 4) frames.
The lower n is the more likely an object is to be detected
quickly during fast robot motion. Computation time is also

dependent on the number of classifiers being passed over a
frame. Using an Image Server resolution of 400×300, objects
are detected in a few tens of milliseconds on a 2.4 GHz Intel
Core 2 processor.

Real images: To evaluate the usefulness of our vision-
based classifier as a simulation tool, we ran some real images
through it. While some faces are classified perfectly, false
positive rates significantly increased (for some examples, see
Figure 7). This was to be expected, given that real faces
exhibit a much higher degree of detail and a much wider
variety of features than those used to train our classifier.
However, the same classifier has been trained with greater
success on real faces by Viola and Jones [19], and the
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Fig. 6. Examples of other objects detected: hand, plants, chair.

training process for classifiers of real rescue robot systems
would not differ from the training process we used within
USARSim. In fact, our classifier correctly identifies faces in
approximately 88% of simulation images, while Viola and
Jones’ classifier correctly identifies faces in approximately
90% of real images. Consequently we believe that it is a valid
simulation tool: vision-based automated object recognition in
real rescue systems would provide similar data and need to be
integrated in a similar way to our simulation-based classifier.

Fig. 7. Results of running real images through our trained classifier. Some
faces are recognised well, but the rate of false positives and undetected faces
increases significantly.

VI. FURTHER WORK

Several extensions to our object detection system could
lead to further improvements in victim detection and map
quality. Some of these are detailed here.

Improved detection range and detection of more object
types: We hope soon to train classifiers that can detect faces
at further distances than at present, using higher resolution
images from USARSim. We further hope to train the classi-
fier on a wider range of objects.

Eliminate need for the simulated VictimSensor: Currently
our face classifiers work for upright faces only. Since the
primary goal of robotic search and rescue is to find victims,
we plan to extend our victim detection system to victims in
differing poses, such as those that are lying down. We hope
also to train classifiers for other body parts so as to eliminate
reliance on the VictimSensor. If our vision-based victim
sensor proves to be very reliable, we envision eventually
integrating it either into the simulator itself or into the image

server, so that the classifier may be available to the wider
USARSim community.

Tracking by AirRobots: Since AirRobots are increasingly
being used successfully in exploration efforts, most recently
in RoboCup 2009 where our team made extensive use
of AirRobots in various tests, we plan to use our object
recognition system to enable AirRobots to track objects on
the ground. This can in turn be used to improve mutual
localisation amongst ground robots within the team.

Object recognition using non-standard views: A recent
addition to USARSim has been the catadioptric omnidirec-
tional camera which provides a full 360 degree view of a
robot’s surroundings. Additionally, the Kenaf robot platform
uses a fish-eye lens to provide a top-down view of the robot.
We are interested in investigating whether object recognition
can be applied to such non-standard image data using an
internal representation of a given object, or using a separate
classifier.

Dust and Smoke: Real disaster scenes are likely to be
subject to dust and smoke; it would be interesting to evaluate
our system in the presence of such visual clutter.

VII. CONCLUSIONS

We have developed a recognition system for faces and
common obstacles in disaster zones exploiting USARSim’s
highly realistic visual rendering. Although the algorithms
that we have used are not new, our main contribution is
the integration of existing algorithms within a full robot
rescue system. One novel feature of our work is the use
of a super-computer to train the detectors; without that, the
results reported here would not have been achieved.

Our victim detection rivals USARSim’s simulated Victim-
Sensor, both in terms of the number of victims found and
the distance at which victims may be identified. Detectors
for obstacles such as furniture and potted plants allow us
to produce richer maps which give a clearer view of an
environment’s topography. Since our object detectors consist
of single XML files generated using open source libraries,
they can easily be integrated into any application interface
to USARSim.

For chairs and hands the results were less impressive than
for faces and plants; chairs are difficult to recognise because
their shapes are complex and they are characterised by thin
stick-like components, and hands are even more difficult
to recognise because there are so many different gestures.
However with our recent experience in developing classifiers
with the help of the supercomputer cluster we hope to re-visit
such items to improve our current classifiers for them.

Our classifier does not perform as impressively on real-
world images. This makes sense however, given that it
has been trained on simulator images. Similar real-world
classifiers for real robot rescue systems could be trained in
the same way, as has already been performed by Viola and
Jones [19]. Consequently any future research in USARSim
that draws conclusions based on a simulated vision-based
classifier such as ours is relevant to real-world systems.

In addition, many modern camera systems have the facility
to run small pieces of code on the raw image near the camera,
and to only then send the results to the main processor. Given
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the small code size and simplicity of our classifier, it could be
run on the camera itself. The object detection results would
then be available to any system using the camera. Since
this is a realistic possibility in reality, we envision extending
USARSim to behave in a similar manner: an object detection
system could be built into the image server or the simulator
itself, and the detection results would be available to the
wider USARSim community.
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APPENDIX

Training a classifier to detect objects in USARSim

Collect images: A collection of both positive and negative
examples is required. Positive examples contain the object of
interest, whereas negative examples do not. In the positive
examples, rectangles must mark out the object of interest,
and these rectangles should be as close as possible to the
object’s boundaries. Ideally, the bounding boxes in every
image should have the same scale.

Four sets of images of required: a positive set containing
the object of interest; another positive set for testing pur-
poses; a negative (or ‘backgrounds’) set for training; and
a negative set for testing. The test sets should not contain
any images that were used for training. Several thousand
images are required, both for positive and negative samples.
For frontal faces we used 1500 positive training images, 100
positive testing images, 5000 negative training images and
100 negative testing images.

Create samples: OpenCV’s CreateSamples function
can be used to create positive training samples. If there
are not sufficient images for training (several thousand are
required) additional images may be created by distorting
existing images. However, the wider the range of reflections,
illuminations and backgrounds, the better the classifier is
likely to be trained.

The CreateSamples function generates a compressed
file which contains all positive images. Assuming a sample
size of 20x20 is suitable for most objects, samples are
reduced to this size. We experimented with larger sizes, but
there was not any noticeable improvement.

Training: OpenCV’s HaarTraining function may be
used to train the classifiers. Custom parameters include
minimum hit rate, maximum false alarm, type of boosting
algorithm and the number of stages. OpenCV developers
recommend that at least 20 stages are required for a classifier
to be usable. We obtained the best results using 30 stages
and the default values for the other parameters.

For our training, we used an Oxford Supercomputing Cen-
tre cluster having 66 nodes, each having 8 processors (2 quad
core Intel Xeon 2.8GHz) and memory 16GiB DDR2. An
essential advantage of this cluster was its parallel processing
capability, which allowed for the classifiers to be trained in
a reasonable time. Training took approximately 72 hours for
each classifier (for comparison, we estimate that the same
task on a single PC would take over a month).

Performance evaluation: Performance of a classifier can
be measured using OpenCV’s performance utility. This eval-
uates the entire testing set and returns the number of correct
detections, missed detections and false positives.
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