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Abstract. With the progress made in active exploration, the robots
of the Joint Rescue Forces are capable of making deliberative decisions
about the frontiers to be explored. The robots select the frontiers having
maximum information gain, taking into account potential communica-
tion limitations. The robots incorporate the positions of their team mates
into their decisions, to optimize the gain for the team as a whole. Ac-
tive exploration is based on a shared occupancy map, which is generated
online. The images of the omnidirectional camera can be used to auto-
matically detect victims and to add additional information to the map.

Introduction

The RoboCup Rescue competitions provide benchmarks for evaluating robot
platforms’ usability in disaster mitigation. Research groups should demonstrate
their ability to deploy a team of robots that explore a devastated area and lo-
cate victims. The Virtual Robots competition, part of the Rescue Simulation
League, is a platform to experiment with multi-robot algorithms for robot sys-
tems with advanced sensory and mobility capabilities. The developed algorithms
should be directly portable to fieldable systems, as demonstrated by several of
the participating teams [1].

This year, shared interest in the application of machine learning techniques to
multi-robot settings has led to a joint effort between the laboratories of Oxford
and Amsterdam.

1 Team Members

UsarCommander was originally developed by Bayu Slamet and all other contri-
butions have been built into his framework.



The following contributions have been made by current and past team members:

Arnoud Visser : supervision [1], exploration & navigation algorithms [2], com-
munication protocol [3]

Bayu Slamet : GUI, real time visualization [4], several scan matching algo-
rithms, manifold-SLAM [5, 6], communication protocol [3], ex-
ploration behaviors [2]

Max Pfingsthorn : off-line rendering, several scan matching algorithms, manifold-
SLAM, navigation behaviors [5, 6]

Tijn Schmits : image processing, victim detection [4], sensor development [7],
GUI, communication protocol

Xingrui-Ji et al. : occupancy grid map interpretation, beyond frontier explo-
ration [8]

Aksel
Ethembabaoglu

: image processing, active target tracking [9]

Steven Roebert : map attribution, omnidirectonial camera usage

Julian de Hoog : multi-robot exploration algorithms, communication roles

2 Scan Matching

The possibilities for active exploration are heavily dependent on a correct estima-
tion of a map of the environment. Many advanced techniques that aim to detect
and correct error accumulation have been put forward by SLAM researchers.
Although these SLAM techniques have proven very effective in achieving their
objective, they are usually only effective once errors have already accumulated.
With a robust scan matching algorithm the localization error is minimal, and
the effort to detect and correct errors can be reduced to a minimum (see e.g.
[10]).

Slamet and Pfingsthorn [5] performed an extensive survey of the performance
of three scan matching algorithms in different environments. The survey demon-
strated strong performance indoors, but less reliable results outdoors. Outdoor
environments can contain large free spaces, where only sparsely obstacles are
detected. Consequently, the scan matching algorithms were extensively tested in
2007 for outdoor environments and it was demonstrated that the robustness of
the scan matching algorithms could be improved by matching against accumu-
lated scans. With a storage technique like quad trees this accumulation can be
done without losing the accuracy of the measurements.

One of the experiments was performed in the outdoor area of the 2006 Virtual
Robot competition, which we call ‘The Park’. The experiment involved use of
two implementations of the ICP algorithm [11]; IDC [12] and WSM [13]. The
point-correlation procedures of the original implementations were replaced with a
nearest neighbor-search in a quad tree. No additional modifications were made to
the internal workings of these scan matchers, so we refer the interested reader to
prior research [6, 5] and the original papers for further details. The experiments
investigated the improvements that can be gained from using quad trees for



both algorithms. The visualizations were created with the standard occupancy
rendering techniques from [6]. All presented results are strictly based on scan
matching.

(a) original IDC (b) Q-IDC

(c) original WSM (d) Q-WSM

Fig. 1. Comparison of scan matching algorithms for a drive through a park, with poor
odometry and sparse range scans.

For the experiment, an area of approximately 80 by 40 meters was used,
with the robot starting in the bottom-right corner and traversing the park in a
clockwise direction. The robot’s path is shaded with gray for clarity and should
describe a single closed loop from tip to tail. Both original scan matchers accu-
mulate significant error; IDC ‘overshoots’ the end of the loop and WSM leaves a
gap of several meters. Using the accumulated scans in the q-tree both IDC and
WSM close the loop implicitly. Over the whole dataset the average correlation
distance reduces from 9.83 mm to 4.83 mm for IDC and from 10.20 mm to 5.62
mm for WSM.

3 Localization and Mapping

The mapping algorithm of the Joint Rescue Forces is based on the manifold
approach [10]. Globally, the manifold relies on a graph structure that grows
with the amount of explored area. Nodes are added to the graph to represent
local properties of newly explored areas. Links represent navigable paths from
one node to the next.



The mapping algorithm is not dependent on information about the movement
of the robot for the creation of links. In practice the displacement as reported
by the inertial navigation sensor serves as an initial estimate for scan matching.
Outdoors, the measurements of the GPS sensor are used. Thereafter, displace-
ment is estimated by comparing the current laser scan with laser scans recorded
shortly before, stored in nearby nodes of the graph. As soon as the displacement
becomes so large that the confidence in the match between the current scan and
the previous scan drops, a new node is created to store the scan and a new link is
created that corresponds to the displacement. A new part of the map is learned.

As long as the confidence is high enough, the information on the map is
sufficient and no further learning is necessary. The map is just used to get an
accurate estimate of the current location. The localization algorithm maintains a
single hypothesis about where the robot currently is and does an iterative search
around that location when new measurement data arrives. For each point the
correspondence between the current measurement data and the previous mea-
surement data is calculated. The point with the best correspondence is selected
as the center of a new iterative search, until the search converges. Important
here is the measure for the correspondence. For the Joint Rescue Forces, several
scan matching algorithms are available (as introduced in the previous section)
which can be used as correspondence measure.

The graph structure means that it is possible to maintain multiple discon-
nected maps. In the context of SLAM for multiple robots, this makes it possible
to communicate the graphs and to have one disconnected map for each robot.
Additionally, it is possible to start a new disconnected map when a robot loses
track of its location, for example after falling down stairs.

The graph structure of the manifold can be easily converted into occupancy
grids with standard rendering techniques, as demonstrated in Fig. 1 and [6].

4 Multi-Robot Exploration

The approach of the UvA Rescue Team in previous years [14, 4] was to passively
acquire the information to be stored in the map while the robot or operator
was wandering around pursuing other objectives, like finding victims. This year
however the focus will be on active exploration: to explicitly plan the next ex-
ploration action a which will increase the knowledge about the world the most.
In this paradigm victim finding becomes the side-effect of efficient exploration.

A key aspect of this year’s approach is that the information gain for areas
of the environment not yet visited by the robot can be estimated with long-
range laser range measurements. It is possible to generate two occupancy grids
simultaneously [8]: one based on the maximum sensing range rmax of the range
sensing device and another one based on a more conservative safety distance
rsafe. Typical values for rmax and rsafe are 20 meters and 3 meters respectively.

The result is that the safe region determined by rsafe is a subset of the
open area. Frontiers can then be extracted on the boundaries of the safe region
where the robot can enter free space, and the area beyond each frontier (i.e. its



associated information gain) can be estimated directly from the current map
by calculating the amount of free space detected beyond it. For each frontier it
is also straightforward to calculate how hard it is to reach (i.e. its associated
movement cost) using a path planner.

Knowing both (i) the information gain and (ii) the movement cost for each
frontier allows for active exploration. As discussed in [2], active exploration of the
robots can be easily tuned by adjusting the balance between these two values.
Shifting the balance in favor of information gain has the effect that robots explore
mainly the corridors, while shifting the balance towards movement costs has the
effect that the robots enter the rooms along the corridors.

An additional increasingly important consideration in multi-robot explo-
ration is communication. Knowledge attained by the robots is only useful if
it reaches the ComStation, but in many environments significant areas will be
out of direct communication range. The extent of this range is difficult to predict,
because it depends on the number and nature of obstacles in the line between
the robot and the ComStation.

In our approach [3], typical signal levels in the environment are learned dur-
ing exploration, to facilitate a more reliable prediction of communication success.
The predicted signal levels are then incorporated into the estimation of the infor-
mation gain: the more likely a robot will be able to communicate its knowledge
from a certain area, the more interested it will be in exploring this area.

Fig. 2. One robot explores while two robots act as relays in passing information about
Room B to the ComStation in Room A. Grey circles indicate communication ranges.

At the same time, however, there will inevitably be areas in the environment
that are out of range but should still be explored. Knowledge gained about these
areas by a robot may either be physically carried back to the ComStation, or
communicated multi-hop to one or more robots acting as relays between the
exploration area and the ComStation (see Fig. 2). The latter approach is likely
to be more efficient in most scenarios, and will be implemented by dynamically
assigning specific roles (such as explorer or relay) to robots during the ongoing
exploration effort.



For the 2008 competition, extensive use will also be made of a-priori maps.
The information gain can be better estimated with the difficult mobility areas
indicated on the a-priori map. The prediction of communication success can be
initiated based on the estimate of communication difficulty. The movement costs
can be better estimated with level of difficulty of mobility.

5 Victim detection

Camera images can be used to automatically detect victims, independent from
the Victim sensor provided by USARsim, as indicated in [4]. This independent
information can be used to increase the robustness of the detection. This year
the OmniCam sensor3 is introduced in USARsim [7]. An omnidirectional cata-
dioptric camera has some great advantages over conventional cameras, one of
them being the fact that visual landmarks (such as victims) remain in the field
of view much longer than with a conventional camera. This characteristic will
be exploited during the competition.

Fig. 3. The UvA robot lab seen through an omnidirectional catadioptric camera (both
real and simulated).

The Unreal Engine only allows a limited number of flat mirrors. To create
an omnidirectional catadioptric camera with a parabolic mirror several security
cameras are placed at the Effective Viewpoint inside the mirror, and their 2D
images are displayed with UV-mapping on the parabolic 3D-surface in front of
them. A normal UsarSim camera collects the world as displayed on the parabolic
3D-surface. As can been seen in Fig. 3, the result is very realistic.

Omnidirectional camera pictures can be transformed to a cylindrical view
according to the following equations describing the relation between cylindrical

3 The OmniCam package is available at http://student.science.uva.nl/

~tschmits/USARSimOmniCam/



ucyl,vcyl-coordinates and omnidirectional xomni,yomni-coordinates [15].

xomni =
(

romni · xcyl

Xcyl

)
cos

(
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)
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)
sin

(
2π · ycyl

Ycyl

)
(2)

In this equation the variable romni defines the maximum radius of the omni-
directional image in pixels, while Ucyl and Vcyl describe the width and height of
the cylindrical image respectively. The result is shown in Figure 4.

Fig. 4. The UvA robot lab seen with a cylindrical view (both real and simulated)

Equivalently, the omnidirectional pictures can be transformed to a Birds-
Eye view. The correspondence between a pixel in the omnidirectional image
pomni = (xomn, yomn) and a pixel in the Birds-Eye view image pbe = (xbe, ybe)
is defined by the following equations

θ = arccos
z√

x2
be + y2

be + z2
, φ = arctan

ybe

xbe
(3)

ρ =
h

1 + cos θ
(4)

xomn = ρ sin θ cos φ, yomn = ρ sin θ sinφ (5)

where h is the radius of the circle describing the 90 degree incidence angle on
the omnidirectional camera effective viewpoint. The variable z is defined by the
distance between the effective viewpoint and the projection plane in pixels [16].

6 Conclusion

This paper summarizes improvements in the control software of the UvA Res-
cue Team since RoboCup 2007 in Atlanta, where the semi-final was reached.



This progress was demonstrated at the German Open 2008, where the final was
reached. At RoboCup 2008 in Suzhou, the focus of the Joint Rescue Forces will
be on active exploration of frontiers and the integration of the omnidirectional
information into the user interface.
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